Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 9: 1678, 2018.
Article in English | MEDLINE | ID: mdl-30515180

ABSTRACT

Understanding the unusual physiological mechanisms that enable drought tolerance in xerophytes will be of considerable benefit because of the potential to identify novel and key genetic elements for future crop improvements. These plants are interesting because they are well-adapted for life in arid zones; Zygophyllum xanthoxylum, for example, is a typical xerophytic shrub that inhabits central Asian deserts, accumulating substantial levels of sodium (Na+) in its succulent leaves while growing in soils that contain very low levels of this ion. The physiological importance of this unusual trait to drought adaptations remains poorly understood, however. Thus, 2-week-old Z. xanthoxylum plants were treated with 50 mM NaCl (Na) for 7 days in this study in order to investigate their drought tolerance, leaf osmotic potential (Ψs) related parameters, anatomical characteristics, and transpiration traits. The results demonstrated that NaCl treatment significantly enhanced both the survivability and durability of Z. xanthoxylum plants under extreme drought conditions. The bulk of the Na+ ions encapsulated in plants was overwhelmingly allocated to leaves rather than roots or stems under drought conditions; thus, compared to the control, significantly more Na+ compared to other solutes such as K+, Ca2+, Cl-, sugars, and proline accumulated in the leaves of NaCl-treated plants and led to a marked decrease (31%) in leaf Ψs. In addition, the accumulation of Na+ ions also resulted in mesophyll cell enlargement and leaf succulence, enabling the additional storage of water; Na+ ions also reduced the rate of water loss by decreasing stomatal density and down-regulating stomatal aperture size. The results of this study demonstrate that Z. xanthoxylum has evolved a notable ability to utilize Na+ ions to lower Ψs, swell its leaves, and decrease stomatal aperture sizes, in order to enable the additional uptake and storage of water and mitigate losses. These distinctive drought adaption characteristics mean that the xerophytic plant Z. xanthoxylum presents a fascinating case study for the potential identification of important and novel genetic elements that could improve crops. This report provides insights on the eco-physiological role of sodium accumulation in xerophytes adapted to extremely arid habitats.

2.
Funct Plant Biol ; 41(2): 203-214, 2014 Feb.
Article in English | MEDLINE | ID: mdl-32480979

ABSTRACT

Lotus corniculatus L. is an important legume for forage, but is sensitive to salinity and drought. To develop salt- and drought-resistant L. corniculatus, ZxNHX and ZxVP1-1 genes encoding tonoplast Na+/H+ antiporter and H+-pyrophosphatase (H+-PPase) from a succulent xerophyte Zygophyllum xanthoxylum L., which is well adapted to arid environments through accumulating Na+ in its leaves, were transferred into this forage. We obtained the transgenic lines co-expressing ZxNHX and ZxVP1-1 genes (VX) as well as expressing ZxVP1-1 gene alone (VP). Compared with wild-type, both VX and VP transgenic lines grew better at 200mM NaCl, and also exhibited higher tolerance and faster recovery from water-deficit stress: these performances were associated with more Na+, K+ and Ca2+ accumulation in their leaves and roots, which caused lower leaf solute potential and thus retained more water. Moreover, the transgenic lines maintained lower relative membrane permeability and higher net photosynthesis rate under salt or water-deficit stress. These results indicate that expression of tonoplast Na+/H+ antiporter and H+-PPase genes from xerophyte enhanced salt and drought tolerance of L. corniculatus. Furthermore, compared with VP, VX showed higher shoot biomass, more cations accumulation, higher water retention, lesser cell membrane damage and higher photosynthesis capacity under salt or water-deficit condition, suggesting that co-expression of ZxVP1-1 and ZxNHX confers even greater performance to transgenic L. corniculatus than expression of the single ZxVP1-1.

3.
J Plant Physiol ; 168(8): 758-67, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21216025

ABSTRACT

Sodium (Na(+)) has been found to play important roles in the adaptation of xerophytic species to drought conditions. The tonoplast Na(+)/H(+) antiporter (NHX) proved to be involved in the compartmentalization of Na(+) into vacuoles from the cytosol. In this study, a gene (ZxNHX) encoding tonoplast Na(+)/H(+) antiporter was isolated and characterized in Zygophyllum xanthoxylum, a succulent xerophyte growing in desert areas of northwest China. The results revealed that ZxNHX consisted of 532 amino acid residues with a conserved binding domain ((78)LFFIYLLPPI(87)) for amiloride and shared high similarity (73-81%) with the identified tonoplast Na(+)/H(+) antiporters in other plant species. Semi-quantitative RT-PCR analysis showed that the mRNA level of ZxNHX was significantly higher in the leaf than in stem or root. The transcript abundance of ZxNHX in Z. xanthoxylum subjected to salt (5-150 mM NaCl) or drought (50-15% of field water capacity (FWC)) was 1.4-8.4 times or 2.3-4.4 times that of plants grown in the absence of NaCl or 70% of FWC, respectively. Leaf Na(+) concentration in plants exposed to salt or drought was 1.7-5.2 times or 1.5-2.2 times that of corresponding control plants, respectively. It is clear that there is a positive correlation between up-regulation of ZxNHX and accumulation of Na(+) in Z. xanthoxylum exposed to salt or drought. Furthermore, Z. xanthoxylum accumulated larger amounts of Na(+) than K(+) in the leaf under drought conditions, even in low salt soil. In summary, our results suggest that ZxNHX encodes a tonoplast Na(+)/H(+) antiporter and plays important roles in Na(+) accumulation and homeostasis of Z. xanthoxylum under salt and drought conditions.


Subject(s)
Droughts , Gene Expression Regulation, Plant/drug effects , Sodium-Hydrogen Exchangers/metabolism , Sodium/metabolism , Zygophyllum/genetics , Amino Acid Sequence , China , Cloning, Molecular , Desert Climate , Molecular Sequence Data , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Potassium/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/drug effects , Sodium-Hydrogen Exchangers/genetics , Stress, Physiological , Up-Regulation , Zygophyllum/drug effects , Zygophyllum/metabolism , Zygophyllum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...