Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 68(3)2023 01 20.
Article in English | MEDLINE | ID: mdl-36595233

ABSTRACT

Objective. Regulators require that wireless power transfer (WPT) systems and other strong magnetic field sources are compliant with the basic restrictions (BR) defined as the limits of the fields induced in the human body, i.e. the induced electric field/current density/specific absorption rate limits. This can be achieved by demonstrating compliance with the reference levels (RL) defined in air without the human body, i.e. the incident electric/magnetic field limits. Local sources, such as WPT transmitters, generate non-uniform fields that can locally exceed the RL while the induced fields are still well below the BR. In these cases, robust compliance with BR can be demonstrated, generally requiring a large number of simulations. In this study, we proposed an efficient evaluation using a homogeneous phantom and applying a coverage factor to account for the local field enhancements caused by the dielectric contrasts of the highly inhomogeneous human tissues.Approach. The generally applicable coverage factors were derived from a statistical analysis of the field enhancements observed on four magnetic near-field sources placed at different separation distances (2-80 mm) and locations on the back of 12 anatomical models. The field enhancements were characterized by the ratios between the peak induced fields in the anatomical models and those in the homogeneous half-space phantom (ϵr= 55,σ= 0.75 S m-1,ρ= 1,000 kg m-3) at the same distance.Main results. The resulting 99th percentile coverage factors range from 1 and 9 depending on the dosimetric quantity.Significance. The use of these coverage factors reduces the compliance testing effort from hundreds of simulations to only one, and makes experimental testing feasible without the support of simulations. The study also demonstrates that running only a few use-case simulations with anatomical models may underestimate the exposure by more than 10 dB.


Subject(s)
Electromagnetic Fields , Magnetic Fields , Humans , Radiometry , Electricity , Phantoms, Imaging
2.
Sci Rep ; 7(1): 10958, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887503

ABSTRACT

Wearable devices have provided noninvasive and continuous monitoring of physiological parameters in healthcare applications. However, for the comfortable applications of wearable devices on human body, two key requirements are to replace conventional bulky devices into soft and deformable ones and to have wireless wearable communication. In this paper we present a simple, low-cost and highly efficient all-elastomeric conductor that can be used in a soft radio-frequency (RF) transmission line and antenna. We show a stretchable transmission line and two stretchable antennas fabricated with conventional screen printing. The stretchable conductor used in this fabrication method, which is a mixture of Ag and Polydimethylsiloxane (PDMS), can be stretched at high strains while maintaining a high conductivity, low attenuation and feasible radiation performance. The measured conductivity of the stretchable conductor reaches 1000 S/cm. Additionally, the highly conductive printed Ag-PDMS is utilized to construct transmission lines and antennas. The performance of these stretchable components, especially under different conditions of bending, stretching and twisting, are experimentally examined in common wireless-communication frequency bands. Our results demonstrate that printed Ag-PDMS enabled RF passive components have the desired property and quality for wireless wearable communication applications, which would provide new opportunities for wearable healthcare electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...