Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Sci Rep ; 14(1): 11945, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38789468

ABSTRACT

Understanding the mechanisms underlying dysphagia is crucial in devising effective, etiology-centered interventions. However, current clinical assessment and treatment of dysphagia are still more symptom-focused due to our limited understanding of the sophisticated symptom-etiology associations causing swallowing disorders. This study aimed to elucidate the mechanisms giving rise to penetration flows into the laryngeal vestibule that results in aspirations with varying symptoms. Methods: Anatomically accurate, transparent throat models were prepared with a 45° down flapped epiglottis to simulate the instant of laryngeal closure during swallowing. Fluid bolus dynamics were visualized with fluorescent dye from lateral, rear, front, and endoscopic directions to capture key hydrodynamic features leading to aspiration. Three influencing factors, fluid consistency, liquid dispensing site, and dispensing speed, were systemically evaluated on their roles in liquid aspirations. Results: Three aspiration mechanisms were identified, with liquid bolus entering the airway through (a) the interarytenoid notch (notch overflow), (b) cuneiform tubercle recesses (recess overflow), and (c) off-edge flow underneath the epiglottis (off-edge capillary flow). Of the three factors considered, liquid viscosity has the most significant impact on aspiration rate, followed by the liquid dispensing site and the dispensing speed. Water had one order of magnitude higher aspiration risks than 1% w/v methyl cellulose solution, a mildly thick liquid. Anterior dispensing had higher chances for aspiration than posterior oropharyngeal dispensing for both liquids and dispensing speeds considered. The effects of dispending speed varied. A lower speed increased aspiration for anterior-dispensed liquids due to increased off-edge capillary flows, while it significantly reduced aspiration for posterior-dispensed liquids due to reduced notch overflows. Visualizing swallowing hydrodynamics from multiple orientations facilitates detailed site-specific inspections of aspiration mechanisms.


Subject(s)
Deglutition Disorders , Deglutition , Epiglottis , Hydrodynamics , Deglutition/physiology , Humans , Deglutition Disorders/physiopathology , Viscosity , Pharynx , Models, Anatomic , Oropharynx , Larynx/physiopathology
2.
Vis Comput Ind Biomed Art ; 7(1): 12, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772963

ABSTRACT

Speech is a highly coordinated process that requires precise control over vocal tract morphology/motion to produce intelligible sounds while simultaneously generating unique exhaled flow patterns. The schlieren imaging technique visualizes airflows with subtle density variations. It is hypothesized that speech flows captured by schlieren, when analyzed using a hybrid of convolutional neural network (CNN) and long short-term memory (LSTM) network, can recognize alphabet pronunciations, thus facilitating automatic speech recognition and speech disorder therapy. This study evaluates the feasibility of using a CNN-based video classification network to differentiate speech flows corresponding to the first four alphabets: /A/, /B/, /C/, and /D/. A schlieren optical system was developed, and the speech flows of alphabet pronunciations were recorded for two participants at an acquisition rate of 60 frames per second. A total of 640 video clips, each lasting 1 s, were utilized to train and test a hybrid CNN-LSTM network. Acoustic analyses of the recorded sounds were conducted to understand the phonetic differences among the four alphabets. The hybrid CNN-LSTM network was trained separately on four datasets of varying sizes (i.e., 20, 30, 40, 50 videos per alphabet), all achieving over 95% accuracy in classifying videos of the same participant. However, the network's performance declined when tested on speech flows from a different participant, with accuracy dropping to around 44%, indicating significant inter-participant variability in alphabet pronunciation. Retraining the network with videos from both participants improved accuracy to 93% on the second participant. Analysis of misclassified videos indicated that factors such as low video quality and disproportional head size affected accuracy. These results highlight the potential of CNN-assisted speech recognition and speech therapy using articulation flows, although challenges remain in expanding the alphabet set and participant cohort.

3.
Pharmaceutics ; 16(5)2024 May 19.
Article in English | MEDLINE | ID: mdl-38794345

ABSTRACT

The standard multi-dose nasal spray pump features an integrated actuator and nozzle, which inevitably causes a retraction of the nozzle tip during application. The retraction stroke is around 5.5 mm and drastically reduces the nozzle's insertion depth, which further affects the initial nasal spray deposition and subsequent translocation, potentially increasing drug wastes and dosimetry variability. To address this issue, we designed a new spray pump that separated the nozzle from the actuator and connected them with a flexible tube, thereby eliminating nozzle retraction during application. The objective of this study is to test the new device's performance in comparison to the conventional nasal pump in terms of spray generation, plume development, and dosimetry distribution. For both devices, the spray droplet size distribution was measured using a laser diffraction particle analyzer. Plume development was recorded with a high-definition camera. Nasal dosimetry was characterized in two transparent nasal cavity casts (normal and decongested) under two breathing conditions (breath-holding and constant inhalation). The nasal formulation was a 0.25% w/v methyl cellulose aqueous solution with a fluorescent dye. For each test case, the temporospatial spray translocation in the nasal cavity was recorded, and the final delivered doses were quantified in five nasal regions. The results indicate minor differences in droplet size distribution between the two devices. The nasal plume from the new device presents a narrower plume angle. The head orientation, the depth at which the nozzle is inserted into the nostril, and the administration angle play crucial roles in determining the initial deposition of nasal sprays as well as the subsequent translocation of the liquid film/droplets. Quantitative measurements of deposition distributions in the nasal models were augmented with visualization recordings to evaluate the delivery enhancements introduced by the new device. With an extension tube, the modified device produced a lower spray output and delivered lower doses in the front, middle, and back turbinate than the conventional nasal pump. However, sprays from the new device were observed to penetrate deeper into the nasal passages, predominantly through the middle-upper meatus. This resulted in consistently enhanced dosing in the middle-upper turbinate regions while at the cost of higher drug loss to the pharynx.

4.
Life (Basel) ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38541730

ABSTRACT

The human tongue has highly variable morphology. Its role in regulating respiratory flows and deposition of inhaled aerosols remains unclear. The objective of this study was to quantify the uncertainty of nanoparticle deposition from the variability in tongue shapes and positions and to rank the importance of these morphological factors. Oropharyngeal models with different tongue postures were reconstructed by modifying an existent anatomically accurate upper airway geometry. An LRN k-ω model was applied to solve the multiregime flows, and the Lagrangian tracking approach with near-wall treatment was used to simulate the behavior and fate of inhaled aerosols. Once the database of deposition rates was completed, a surrogate model was trained using Gaussian process regression with polynomial kernels and was validated by comparing its predictions to new CFD simulations. Input sensitivity analysis and output updateability quantification were then performed using the surrogate model. Results show that particle size is the most significant parameter in determining nanoparticle deposition in the upper airway. Among the morphological factors, the shape variations in the central tongue had a higher impact on the total deposition than those in the back tongue and glottal aperture. When considering subregional deposition, mixed sensitivity levels were observed among morphological factors, with the back tongue being the major factor for throat deposition and the central tongue for oral deposition. Interaction effects between flow rate and morphological factors were much higher than the effects from individual parameters and were most significant in the throat (pharyngolaryngeal region). Given input normal variances, the nanoparticle deposition exhibits logarithmical normal distributions, with much lower uncertainty in 100-nm than 2-nm aerosols.

5.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38256906

ABSTRACT

This study investigated the intricate dynamics of intranasal spray deposition within nasal models, considering variations in head orientation and stages of the nasal cycle. Employing controlled delivery conditions, we compared the deposition patterns of saline nasal sprays in models representing congestion (N1), normal (N0), and decongestion (P1, P2) during one nasal cycle. The results highlighted the impact of the nasal cycle on spray distribution, with congestion leading to confined deposition and decongestion allowing for broader dispersion of spray droplets and increased sedimentation towards the posterior turbinate. In particular, the progressive nasal dilation from N1 to P2 decreased the spray deposition in the middle turbinate. The head angle, in conjunction with the nasal cycle, significantly influenced the nasal spray deposition distribution, affecting targeted drug delivery within the nasal cavity. Despite controlled parameters, a notable variance in deposition was observed, emphasizing the complex interplay of gravity, flow shear, nasal cycle, and nasal morphology. The magnitude of variance increased as the head tilt angle increased backward from upright to 22.5° to 45° due to increasing gravity and liquid film destabilization, especially under decongestion conditions (P1, P2). This study's findings underscore the importance of considering both natural physiological variations and head orientation in optimizing intranasal drug delivery.

6.
Article in English | MEDLINE | ID: mdl-38044376

ABSTRACT

Chronic and allergic rhinosinusitis impacts approximately 12% of the global population. Challenges in rhinosinusitis treatment include paranasal sinus inaccessibility and variability in delivery efficiency among individuals. This study addresses these challenges of drug delivery by developing a high-efficiency, low-variability protocol for nasal drop delivery to the ostiomeatal complex (OMC) and maxillary sinus. Patient-specific nasal casts were dissected to reveal the configurations of conchae and meatus, providing insights into anatomical features amendable for sinus delivery. Fluorescent dye-enhanced videos visualized the dynamic liquid translocation in transparent nasal casts, allowing real-time assessment and quick adjustment to delivery parameters. Dosimetry to the OMC and maxillary sinus were quantified as drop count and mass using a precision scale. Key delivery factors, including the device type, formulation, and head-chin orientation, were systematically investigated in a cohort of ten nasal casts. Results show that both the squeeze bottle and soft-mist nasal pump yielded notably low doses to the OMC with high variability, and no dose from these two devices was detected within the maxillary sinuses. In contrast, the proposed approach, which included a curved nozzle surpassing the nasal valve and leveraged gravity-driven liquid translocation along the lateral nasal wall, delivered significant doses to the OMC and maxillary sinus. Iterative experimentations identified the optimal head tilt to be 40° and chin tilt to be° from the lateral recumbent position. Statistical analyses established the drop count required for effective OMC/sinus delivery. The proposed delivery protocol holds the potential to enhance chronic rhinosinusitis treatment outcomes with low variability. The dual role of nasal anatomy in posing challenges and offering opportunities highlights the need for future investigations using diverse formulations in a larger cohort of nasal models. Optimized gravity-driven intranasal drop administration delivers significant doses to the ostiomeatal complex and maxillary sinus.

7.
Article in English | MEDLINE | ID: mdl-37533243

ABSTRACT

AIM: The study aimed to deliver sprays to the posterior nose for mucosa immunization or short-term protection. BACKGROUND: Respiratory infectious diseases often enter the human body through the nose. Sars-Cov-2 virus preferentially binds to the ACE2-rich tissue cells in the nasopharynx (NP). Delivering medications to the nose, especially to the NP region, provides either a short-term protective/therapeutic layer or long-term mucosa immunization. Hydrogel-aided medications can assist film formation, prolong film life, and control drug release. However, conventional nasal sprays have failed to dispense mediations to the posterior nose, with most sprays lost in the nasal valve and front turbinate. OBJECTIVE: The objective of the study was to develop a practical delivery system targeting the posterior nose and quantify the dosimetry distribution of agarose-saline solutions in the nasal cavity. METHOD: The solution viscosities with various hydrogel concentrations (0.1-1%) were measured at different temperatures. Dripping tests on a vertical plate were conducted to understand the hydrogel concentration effects on the liquid film stability and mobility. Transparent nasal airway models were used to visualize the nasal spray deposition and liquid film translocation. RESULT: Spray dosimetry with different hydrogel concentrations and inhalation flow rates was quantified on a total and regional basis. The solution viscosity increased with decreasing temperature, particularly in the range of 60-40 oC. The liquid viscosity, nasal spray atomization, and liquid film mobility were highly sensitive to the hydrogel concentration. Liquid film translocations significantly enhanced delivered doses to the caudal turbinate and nasopharynx when the sprays were administered at 60 oC under an inhalation flow rate of 11 L/min with hydrogel concentrations no more than 0.5%. On the other hand, sprays with 1% hydrogel or administered at 40 oC would significantly compromise the delivered doses to the posterior nose. CONCLUSION: Delivering sufficient doses of hydrogel sprays to the posterior nose is feasible by leveraging the post-administration liquid film translocation.

8.
Front Vet Sci ; 10: 1172140, 2023.
Article in English | MEDLINE | ID: mdl-37520001

ABSTRACT

Animals have been widely utilized as surrogate models for humans in exposure testing, infectious disease experiments, and immunology studies. However, respiratory diseases affect both humans and animals. These disorders can spontaneously affect wild and domestic animals, impacting their quality and quantity of life. The origin of such responses can primarily be traced back to the pathogens deposited in the respiratory tract. There is a lack of understanding of the transport and deposition of respirable particulate matter (bio-aerosols or viruses) in either wild or domestic animals. Moreover, local dosimetry is more relevant than the total or regionally averaged doses in assessing exposure risks or therapeutic outcomes. An accurate prediction of the total and local dosimetry is the crucial first step to quantifying the dose-response relationship, which in turn necessitates detailed knowledge of animals' respiratory tract and flow/aerosol dynamics within it. In this review, we examined the nasal anatomy and physiology (i.e., structure-function relationship) of different animals, including the dog, rat, rabbit, deer, rhombus monkey, cat, and other domestic and wild animals. Special attention was paid to the similarities and differences in the vestibular, respiratory, and olfactory regions among different species. The ventilation airflow and behaviors of inhaled aerosols were described as pertinent to the animals' mechanisms for ventilation modulation and olfaction enhancement. In particular, sniffing, a breathing maneuver that animals often practice enhancing olfaction, was examined in detail in different animals. Animal models used in COVID-19 research were discussed. The advances and challenges of using numerical modeling in place of animal studies were discussed. The application of this technique in animals is relevant for bidirectional improvements in animal and human health.

9.
Pharmaceutics ; 15(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37376105

ABSTRACT

Background: Nose-to-brain (N2B) drug delivery offers unique advantages over intravenous methods; however, the delivery efficiency to the olfactory region using conventional nasal devices and protocols is low. This study proposes a new strategy to effectively deliver high doses to the olfactory region while minimizing dose variability and drug losses in other regions of the nasal cavity. Materials and Methods: The effects of delivery variables on the dosimetry of nasal sprays were systematically evaluated in a 3D-printed anatomical model that was generated from a magnetic resonance image of the nasal airway. The nasal model comprised four parts for regional dose quantification. A transparent nasal cast and fluorescent imaging were used for visualization, enabling detailed examination of the transient liquid film translocation, real-time feedback on input effect, and prompt adjustment to delivery variables, which included the head position, nozzle angle, applied dose, inhalation flow, and solution viscosity. Results: The results showed that the conventional vertex-to-floor head position was not optimal for olfactory delivery. Instead, a head position tilting 45-60° backward from the supine position gave a higher olfactory deposition and lower variability. A two-dose application (250 mg) was necessary to mobilize the liquid film that often accumulated in the front nose following the first dose administration. The presence of an inhalation flow reduced the olfactory deposition and redistributed the sprays to the middle meatus. The recommended olfactory delivery variables include a head position ranging 45-60°, a nozzle angle ranging 5-10°, two doses, and no inhalation flow. With these variables, an olfactory deposition fraction of 22.7 ± 3.7% was achieved in this study, with insignificant discrepancies in olfactory delivery between the right and left nasal passages. Conclusions: It is feasible to deliver clinically significant doses of nasal sprays to the olfactory region by leveraging an optimized combination of delivery variables.

10.
Pharmaceutics ; 15(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36839681

ABSTRACT

Delivering vaccines to the posterior nose has been proposed to induce mucosal immunization. However, conventional nasal devices often fail to deliver sufficient doses to the posterior nose. This study aimed to develop a new delivery protocol that can effectively deliver sprays to the caudal turbinate and nasopharynx. High-speed imaging was used to characterize the nasal spray plumes. Three-dimensional-printed transparent nasal casts were used to visualize the spray deposition within the nasal airway, as well as the subsequent liquid film formation and translocation. Influencing variables considered included the device type, delivery mode, release angle, flow rate, head position, and dose number. Apparent liquid film translocation was observed in the nasal cavity. To deliver sprays to the posterior nose, the optimal release angle was found to be 40° for unidirectional delivery and 30° for bidirectional delivery. The flow shear was the key factor that mobilized the liquid film. Both the flow shear and the head position were important in determining the translocation distance. A supine position and dual-dose application significantly improved delivery to the nasopharynx, i.e., 31% vs. 0% with an upright position and one-dose application. It is feasible to effectively deliver medications to the posterior nose by leveraging liquid film translocation for mucosal immunization.

11.
Math Biosci Eng ; 19(11): 10915-10940, 2022 08 01.
Article in English | MEDLINE | ID: mdl-36124575

ABSTRACT

Previous numerical studies of pulmonary drug delivery using metered-dose inhalers (MDIs) often neglected the momentum transfer from droplets to fluid. However, Kolmogorov length scales in MDI flows can be comparable to the droplet sizes in the orifice vicinity, and their interactions can modify the spray behaviors. This study aimed to evaluate the two-way coupling effects on spray plume evolutions compared to one-way coupling. The influences from the mass loading, droplet size, and inhaler type were also examined. Large-eddy simulation and Lagrangian approach were used to simulate the flow and droplet motions. Two-way coupled predictions appeared to provide significantly improved predictions of the aerosol behaviors close to the Ventolin orifice than one-way coupling. Increasing the applied MDI dose mass altered both the fluid and aerosol dynamics, notably bending the spray plume downward when applying a dose ten times larger. The droplet size played a key role in spray dynamics, with the plume being suppressed for 2-µm aerosols and enhanced for 20-µm aerosols. The Kolmogorov length scale ratio dp/η correlated well with the observed difference in spray plumes, with suppressed plumes when dp/η < 0.1 and enhanced plumes when dp/η > 0.1. For the three inhalers considered (Ventolin, ProAir, and Qvar), significant differences were predicted using two-way and one-way coupling despite the level and manifestation of these differences varied. Two-way coupling effects were significant for MDI sprays and should be considered in future numerical studies.


Subject(s)
Albuterol , Procaterol , Aerosols , Beclomethasone , Nebulizers and Vaporizers , Particle Size
12.
Aerosol Air Qual Res ; 22(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-35937716

ABSTRACT

Ultrafine particle (i.e., smaller than 100 nm) in the ambient air is a significant public health issue. The inhalation and deposition of ultrafine particles in the human airways can lead to various adverse health effects. Loose-fitting types of masks are commonly used by the general public in some developing countries for protecting against ultrafine particles in the ambient environment. This research conducted a series of laboratory chamber experiments using two sets of particle sizers and two mannequin heads to study the mask efficiency of selected loose-fitting masks. Results acquired demonstrated that the cloth mask showed a low mask efficiency against ultrafine particles with the mask efficiency generally less than 0.4. The KN95 presented a better mask efficiency among all tested masks with the mask efficiency overall larger than 0.5. In addition, the effect of mask-wearing on the change of ultrafine particle airway deposition efficiency was also investigated in this study. The ultrafine particle deposition efficiency in the airway section studied was found to decrease due to mask-wearing, and the decreases of the deposition efficiencies were similar among all loose-fitting masks tested.

13.
Int J Pharm ; 623: 121920, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35714818

ABSTRACT

Most previous numerical studies of inhalation drug delivery used monodisperse aerosols or quantified deposition as the ratio of deposited particle number over the total number of released particles (i.e., count-based). These practices are reasonable when the aerosols have a sufficiently narrow size range. However, spray droplets from metered-dose inhalers (MDIs) are often polydisperse with a wide size range, so using monodisperse aerosols and/or count-based deposition quantification may lead to significant errors. The objective of this study was to develop a mass-based dosimetry method and evaluate its performance in lung delivery in a mouth-lung (G9) geometry with an albuterol-CFC inhaler. The conventional practices (monodisperse and polydisperse-count-based) were also simulated for comparison purposes. The MDI actuation in the open space was studied using both high-speed imaging and LES-Lagrangian simulations. Experimentally measured spray velocities and size distribution were implemented in the computational model as boundary conditions. Good agreement was achieved between recorded and simulated spray plume evolution spatially and temporally. The polydisperse-mass-based predictions of MDI doses compared favorably with the measurements in all three regions considered (device, mouth-throat, and lung). Significant errors in MDI regional deposition were predicted using the monodisperse and count-based methods. The new polydisperse-mass-based method also predicted local deposition hot spots that were one order of magnitude higher in intensity than the two conventional methods. The results of this study highlighted that a presentative polydisperse size distribution and appropriate deposition quantification method should be applied to reliably predict the MDI drug delivery in the human respiratory tract.


Subject(s)
Albuterol , Metered Dose Inhalers , Administration, Inhalation , Aerosols , Bronchodilator Agents , Humans , Lung , Nebulizers and Vaporizers , Particle Size
14.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35745624

ABSTRACT

Effective pulmonary drug delivery using a metered-dose inhaler (MDI) requires a match between the MDI sprays, the patient's breathing, and respiratory physiology. Different inhalers generate aerosols with distinct aerosol sizes and speeds, which require specific breathing coordination to achieve optimized delivery efficiency. Inability to perform the instructed breathing maneuver is one of the frequently reported issues during MDI applications; however, their effects on MDI dosimetry are unclear. The objective of this study is to systemically evaluate the effects of breathing depths on regional deposition in the respiratory tract using a ProAir-HFA inhaler. An integrated inhaler mouth-throat-lung geometry model was developed that extends to the ninth bifurcation (G9). Large-eddy simulation (LES) was used to compute the airflow dynamics due to concurrent inhalation and orifice flows. The discrete-phase Lagrangian model was used to track droplet motions. Experimental measurements of ProAir spray droplet sizes and speeds were used as initial and boundary conditions to develop the computational model for ProAir-pulmonary drug delivery. The time-varying spray plume from a ProAir-HFA inhaler into the open air was visualized using a high-speed imaging system and was further used to validate the computational model. The inhalation dosimetry of ProAir spray droplets in the respiratory tract was compared among five breathing depths on a regional, sub-regional, and local basis. The results show remarkable differences in airflow dynamics within the MDI mouthpiece and the droplet deposition distribution in the oral cavity. The inhalation depth had a positive relationship with the deposition in the mouth and a negative relationship with the deposition in the five lobes beyond G9 (small airways). The highest delivery efficiency to small airways was highest at 15 L/min and declined with an increasing inhalation depth. The drug loss inside the MDI was maximal at 45-60 L/min. Comparisons to previous experimental and numerical studies revealed a high dosimetry sensitivity to the inhaler type and patient breathing condition. Considering the appropriate inhalation waveform, spray actuation time, and spray properties (size and velocity) is essential to accurately predict inhalation dosimetry from MDIs. The results highlight the importance of personalized inhalation therapy to match the patient's breathing patterns for optimal delivery efficiencies. Further complimentary in vitro or in vivo experiments are needed to validate the enhanced pulmonary delivery at 15 L/min.

15.
Biomedicines ; 10(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35740370

ABSTRACT

Nose-to-brain (N2B) drug delivery is a new approach to neurological disorder therapy as medications can bypass the blood-brain barrier and directly enter the brain. However, the delivery efficiency to the olfactory region using the conventional delivery method is impractically low because of the region's secluded position in a convoluted nasal cavity. In this study, the acoustic radiation force was explored as an N2B delivery alternative in a wide frequency range of 10-100,000 Hz at an increment of 50 Hz. Numerical simulations of the particle deposition in the olfactory region of four nasal configurations were performed using COMSOL. Frequency analysis of the nasal cavities revealed that eigenfrequencies were often associated with a specific region with narrow passages and some eigenfrequencies exhibited an amendable pressure field to the olfactory region. Transient particle tracking was conducted with an acoustic inlet at 1 Pa, and a frequency spectrum of 10-100,000 Hz was imposed on the airflow, which carried the particles with acoustic radiation forces. It was observed that by increasing the pulsating wave frequency at the nostrils, the olfactory delivery efficiency reached a maximum in the range 11-15 kHz and decreased after that. The correlation of the olfactory delivery efficiency and instantaneous values of other parameters such as acoustic velocity and pressure in the frequency domain was examined.

18.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35056118

ABSTRACT

Accurate knowledge of the delivery of locally acting drug products, such as metered-dose inhaler (MDI) formulations, to large and small airways is essential to develop reliable in vitro/in vivo correlations (IVIVCs). However, challenges exist in modeling MDI delivery, due to the highly transient multiscale spray formation, the large variability in actuation-inhalation coordination, and the complex lung networks. The objective of this study was to develop/validate a computational MDI-releasing-delivery model and to evaluate the device actuation effects on the dose distribution with the newly developed model. An integrated MDI-mouth-lung (G9) geometry was developed. An albuterol MDI with the chlorofluorocarbon propellant was simulated with polydisperse aerosol size distribution measured by laser light scatter and aerosol discharge velocity derived from measurements taken while using a phase Doppler anemometry. The highly transient, multiscale airflow and droplet dynamics were simulated by using large eddy simulation (LES) and Lagrangian tracking with sufficiently fine computation mesh. A high-speed camera imaging of the MDI plume formation was conducted and compared with LES predictions. The aerosol discharge velocity at the MDI orifice was reversely determined to be 40 m/s based on the phase Doppler anemometry (PDA) measurements at two different locations from the mouthpiece. The LES-predicted instantaneous vortex structures and corresponding spray clouds resembled each other. There are three phases of the MDI plume evolution (discharging, dispersion, and dispensing), each with distinct features regardless of the actuation time. Good agreement was achieved between the predicted and measured doses in both the device, mouth-throat, and lung. Concerning the device-patient coordination, delayed MDI actuation increased drug deposition in the mouth and reduced drug delivery to the lung. Firing MDI before inhalation was found to increase drug loss in the device; however, it also reduced mouth-throat loss and increased lung doses in both the central and peripheral regions.

19.
Pharmaceutics ; 13(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207109

ABSTRACT

Previous in vivo and ex vivo studies have tested nasal sprays with varying head positions to enhance the olfactory delivery; however, such studies often suffered from a lack of quantitative dosimetry in the target region, which relied on the observer's subjective perception of color changes in the endoscopy images. The objective of this study is to test the feasibility of gravitationally driven droplet translocation numerically to enhance the nasal spray dosages in the olfactory region and quantify the intranasal dose distribution in the regions of interest. A computational nasal spray testing platform was developed that included a nasal spray releasing model, an airflow-droplet transport model, and an Eulerian wall film formation/translocation model. The effects of both device-related and administration-related variables on the initial olfactory deposition were studied, including droplet size, velocity, plume angle, spray release position, and orientation. The liquid film formation and translocation after nasal spray applications were simulated for both a standard and a newly proposed delivery system. Results show that the initial droplet deposition in the olfactory region is highly sensitive to the spray plume angle. For the given nasal cavity with a vertex-to-floor head position, a plume angle of 10° with a device orientation of 45° to the nostril delivered the optimal dose to the olfactory region. Liquid wall film translocation enhanced the olfactory dosage by ninefold, compared to the initial olfactory dose, for both the baseline and optimized delivery systems. The optimized delivery system delivered 6.2% of applied sprays to the olfactory region and significantly reduced drug losses in the vestibule. Rheological properties of spray formulations can be explored to harness further the benefits of liquid film translocation in targeted intranasal deliveries.

20.
J Radiol Prot ; 41(4)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33823493

ABSTRACT

Radioactive aerosols that arise from natural sources and nuclear accidents can be a long-term hazard to human health. Despite the heterogeneous particle deposition in the respiratory tract, uniform aerosol doses have long been assumed in respiratory radiation dosimetry predictions, such as in the compartment and uniform distribution models. It is unclear how these deposition patterns affect internal radiation doses, which are critical in the health assessment of radioactive hazards. This work seeks to quantify the radio-dosimetry sensitivity to initial deposition patterns by comparing computational and compartment/uniform models. A new approach was developed to implement the compartment model into voxel phantoms (e.g. VIP-man) for radiation dosimetry. The calculated radiation fluence, energy deposition density and organ doses were compared to those obtained from coupling computational fluid-particle dynamics (CFPD) with Monte Carlo radiation transport and to those obtained from uniform source distribution approximation. The results show that the source particle distribution within the respiratory system substantially influences the radiation dosimetry distribution. The compartment and uniform models underestimated aerosol deposition in the crania ridge, leading to lower doses in the trachea and surrounding organs. For 0.5 MeV gammas, the CFPD-Monte Carlo N-particle (MCNP) model predicted a tracheal dose twice that of the compartment model and four times the uniform model. For 1 MeV betas, the CFPD-MCNP-predicted tracheal dose is 2.6 times that of the compartment model and 14 times the uniform model. Compared to the compartment/uniform models, the CFPD approach predicted a 50% lower beta dose in the lung but higher beta doses in the heart (six times), liver (four times) and stomach (2.5 times). It is suggested that including compartments for the lung periphery and tracheal carina ridge may improve the dosimetry accuracy of compartment models.


Subject(s)
Hydrodynamics , Radiometry , Computer Simulation , Humans , Lung , Monte Carlo Method , Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...