Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Soc Rev ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171573

ABSTRACT

Chiral amine scaffolds are among the most important building blocks in natural products, drug molecules, and functional materials, which have prompted chemists to focus more on their synthesis. Among the accomplishments in chiral amine synthesis, transition-metal-catalyzed enantioselective C-N cross-coupling is considered one of the most efficient protocols. This approach combines traditional C(sp2)-N cross-coupling methods (such as the Buchwald-Hartwig reaction Ullmann-type reaction, and Chan-Evans-Lam reaction), aryliodonium salt chemistry and radical chemistry, providing an attractive pathway to a wide range of structurally diverse chiral amines with high enantioselectivity. This review summarizes the established protocols and offers a comprehensive outlook on the promising enantioselective C-N cross-coupling reaction.

2.
Nat Commun ; 15(1): 3353, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637535

ABSTRACT

Developing facile and direct synthesis routes for enantioselective construction of cyclic π-conjugated molecules is crucial. However, originate chirality from the distorted structure around heptagon-containing polyarenes is largely overlooked, the enantioselective construction of all-carbon heptagon-containing polyarenes remains a challenge. Herein, we present a highly enantioselective synthesis route for fabricating all carbon heptagon-containing polyarenes via palladium-catalyzed carbene-based cross-coupling of benzyl bromides and N-arylsulfonylhydrazones. A wide range of nonplanar, saddle-shaped tribenzocycloheptene derivatives are efficiently prepared in high yields with excellent enantioselectivities using this approach. In addition, stereochemical stability experiments show that these saddle-shaped tribenzocycloheptene derivatives have high inversion barriers.

3.
Talanta ; 194: 308-313, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30609535

ABSTRACT

Lipid droplets were found to be involved in many organism activities. Here, a lipid droplets-targeted near-infrared fluorescence probe (named XHZ) for ratiometric detection of endogenous hypochlorous acid/hypochlorite (HClO/ClO-) in living cells was developed, which was constructed by a coumarin moiety and a malononitrile derivative. XHZ could detect HClO/ClO- with high selectivity and sensitivity in a ratiometric manner based on FRET (Förster Resonance Energy Transfer) mechanism. The two well-resolved emission (470/672 nm) bands could ensure accurate detection of HClO/ClO- in vitro as well as in vivo. XHZ was successfully used for ratiometric fluorescence imaging of exogenous and endogenous HClO/ClO- in RAW264.7 cells. A good linear relationship between the fluorescence intensity ratios of the two emissions and HClO/ClO- concentrations from 0 to 40 µM was obtained. Importantly, XHZ could localize mainly in lipid droplets of RAW264.7 cells. To the best of our knowledge, XHZ is the first lipid droplets-targeted ratiometric fluorescence probe for HClO/ClO-.


Subject(s)
Fluorescent Dyes/metabolism , Hypochlorous Acid/metabolism , Lipid Droplets/metabolism , Animals , Cell Survival , Coumarins/chemistry , Fluorescent Dyes/chemistry , Lipid Droplets/chemistry , Mice , Optical Imaging , RAW 264.7 Cells
4.
Anal Chim Acta ; 950: 178-183, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27916123

ABSTRACT

A mitochondria-targeted fluorescence probe (CPBT) for ratiometric detection of endogenous hypochlorite in the living cells was developed. CPBT could detect hypochlorite with high selectivity and sensitivity in a ratiometric manner based on FRET mechanism. In absence of hypochlorite, when CPBT was excited with absorption maximum wavelength of the donor moiety, it showed the emission of acceptor moiety because of FRET process. However, in the presence of hypochlorite, the reaction of CC double bond with hypochlorite interrupted the conjugation system resulting in the inhibition of FRET process and the emission of the donor moiety. The two well-resolved emission bands can ensure accurate detection of hypochlorite. A good linear relationship between the fluorescence intensity ratios of the two emissions and the ClO- concentrations in the range from 41.8 nM (detection limit) to 12.5 µM was established. Importantly, CPBT could localize mainly in the mitochondria of RAW264.7 cells. CPBT was successfully used to fluorescence ratiometric imaging of endogenous hypochlorite in RAW264.7 cells.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid/analysis , Mitochondria/chemistry , Animals , Fluorescence Resonance Energy Transfer , Mice , Microscopy, Fluorescence , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL