Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 260: 121953, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38901317

ABSTRACT

Electrochemical pretreatment (EPT) has shown to be superior in improving acidogenic co-fermentation (Co-AF) of waste activated sludge (WAS) and food waste (FW) for volatile fatty acids (VFAs). However, the influence of EPT electrode materials on the production of electrogenerated oxidants (such as singlet oxygen (1O2) and reactive chlorine species (RCS)), as well as their effects on properties of electrodes, the microbial community structure and functional enzymes remain unclear. Therefore, this study investigated the effects of various metal oxide coated electrodes (i.e., Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2, and Ti/IrO2-RuO2) on EPT and subsequent Co-AF of WAS-FW. The results showed that EPT with Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2 and Ti/IrO2-RuO2 electrodes generated 165.3-848.2 mg Cl2/L of RCS and 5.643 × 1011-3.311 × 1012 spins/mm3 of 1O2, which significantly enhanced the solubilization and biodegradability of WAS-FW by 106.4 %-233.6 % and 177.3 %-481.8 %, respectively. Especially with Ti/Ta2O5-IrO2 as the electrode material, an appropriate residual RCS (2.0-10.4 mg Cl2/L) remained in Co-AF step, resulted in hydrolytic and acidogenic bacteria (e.g., Prevotella_7, accounting for 78.9 %) gradually become dominant rather than methanogens (e.g., Methanolinea and Methanothrix) due to their different tolerance to residual RCS. Meanwhile, the functional gene abundances of hydrolytic and acidogenic enzymes increased, while the methanogenic enzymes deceased. Consequently, this reactor produced the highest VFAs up to 545.5 ± 36.0 mg COD/g VS, which was 101.8 % higher than that of the Control (without EPT). Finally, the economic analysis and confirmatory experiments further proved the benefits of WAS-FW Co-AF with EPT.

2.
Sci Total Environ ; 870: 162025, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36739035

ABSTRACT

The complex and rigid floc structure often limits the reutilization of waste activated sludge (WAS). Electrochemical pretreatment (EPT) is one of the most effective technologies that can enhance WAS disintegration. But a comprehensive investigation into how multiple EPT conditions work was rarely reported. The study evaluated the effects of multiple EPT conditions, i.e., different electrolytes (NaCl, Na2SO4, and CaCl2), electrolytes dosage (0 g/L, 0.5 g/L, 1.0 g/L, and 3.0 g/L), EPT current (0 A, 0.5 A, 1.0 A, and 3.0 A) and EPT time (0 min, 30 min, 60 min, and 90 min) on WAS disintegration. The results showed that NaCl was outstanding from other electrolytes in promoting more WAS disintegration. Besides, a relatively higher NaCl dosage, a higher EPT current, and a longer EPT time promoted more reactive chlorine species (RCS), thus enhancing WAS disintegration in terms of extracellular polymeric substances (EPS) structure destruction and biodegradable organic matter release. After EPT for 60 min at NaCl dosage of 1.0 g/L and current of 1.0 A, the EPS multilayer structure destruction, biodegradable organic matters release, and soluble chemical oxygen demand (SCOD) increase in the supernatant were enhanced by 17.2 %, 130.5 %, and 238.7 %, respectively. Then a predictive quadratic model was established and the impact significance of the above EPT factors for enhancing WAS disintegration followed dosage of NaCl > current > EPT time. Furthermore, response surface methodology (RSM) suggested NaCl dosage of 2.75 g/L, current of 2.0 A, and EPT time of 30 min were the optimal EPT conditions, bringing a 42.0 % increase in the net economic benefit of WAS treatment compared to without EPT.

3.
Sci Total Environ ; 871: 162172, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36775172

ABSTRACT

Recently, increasing attention is given on the resource and energy recovery (e.g. short-chain fatty acids (SCFAs) and phosphorus (P)) from waste active sludge (WAS) under the "Dual carbon goals". This study compared four thiosulfate-assisted Fe2+/persulfate (TAFP) pretreatments of WAS, i.e. in-situ TAFP pretreatment (R1), ex-situ TAFP pretreatment (R2), in-situ TAFP pretreatment + pH adjustment (R3) and ex-situ TAFP pretreatment + pH adjustment (R4), followed by anaerobic fermentation over 20 days for SCFA production and P recovery. The results showed that the maximal SCFA yields in R1-4 were 730.2 ± 7.0, 1017.4 ± 13.9, 860.1 ± 40.8, and 1072.0 ± 33.2 mg COD/L, respectively, significantly higher than Control (365.2 ± 17.8 mg COD/L). The findings indicated that TAFP pretreatments (particularly ex-situ TAFP pretreatment) enhanced WAS disintegration and provided more soluble organics and subsequently promoted SCFA production. The P fractionation results showed the non-apatite inorganic P increased from 11.6 ± 0.2 mg P/g TSS in Control to 11.8 ± 0.5 (R1), 12.4 ± 0.3 (R2), 13.2 ± 0.7 (R3) and 12.7 ± 0.7 mg P/g TSS (R4), suggesting TAFP pretreatments improved P bioavailability due to formation of Fe-P mineral (Fe(H2PO4)2·2H2O), which could be recycled through magnetic separators. These findings were further strengthened by the analysis of microbial community and related marker genes that fermentative bacteria containing SCFA biosynthesis genes (e.g. pyk, pdhA, accA and accB) and iron-reducing bacteria containing iron-related proteins (e.g. feoA and feoB) were enriched in R1-4 (dominant in ex-situ pretreatment systems, R2 and R4). Economic evaluation further verified ex-situ TAFP pretreatment was cost-effective and a better strategy over other operations to treat WAS for SCFA production and P recovery.


Subject(s)
Sewage , Thiosulfates , Fermentation , Sewage/microbiology , Anaerobiosis , Fatty Acids, Volatile , Phosphorus , Iron , Hydrogen-Ion Concentration
4.
Bioresour Technol ; 368: 128364, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36423770

ABSTRACT

Electrochemical pretreatment (EPT) is an efficient technology to improve volatile fatty acids (VFAs) production during anaerobic fermentation of waste activated sludge (WAS). This study investigated the co-effects of different current intensities, electrolyte NaCl dosage and pretreatment time for promoting VFAs production. The results showed that it was considerably enhanced by 51.6 % when EPT was performed at 1.0 A, 1.0 g/L and 60 min, and response surface methodology strategy adjusted the optimal EPT conditions to 1.0 A, 1.2 g/L and 66 min. The potential mechanisms were proposed that EPT at optimal conditions greatly enhanced solubilization and hydrolysis of WAS and selectively inactivated methanogens, causing the enrichment of acidogenic bacteria (i.e., Lactobacillus, Saccharimonadales, Tetrasphaera and Prevotella) due to generated reactive chlorine species. Finally, the economic analysis indicated the promising application potential with the profit of EPT at optimal conditions increasing by 36.0 %.


Subject(s)
Euryarchaeota , Sewage , Fermentation , Anaerobiosis , Hydrolysis
5.
Sci Total Environ ; 713: 136651, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31955108

ABSTRACT

Sediment containing numerous nutrients and pollutants has become an important consideration when treating black-odor water. Excessive activated sludge produced in wastewater treatment plants contains a large number of microorganisms, which is beneficial for removing organics and nutrients from the black-odor sediment. In this study, three types of sludge from a secondary sedimentation tank (SST), a digestion tank (DT), and an aerobic tank treating landfill leachate (AT_leachate) were used to treat black-odor sediment, respectively. All the three types of activated sludge enhanced the treatment performance of sediment. The SST sludge worked the best with the optimal dosage of 2.56 g/(kg sediment), and the removal of nitrogen and organics reached 57.03 and 28.14%, respectively. Illumina MiSeq sequencing revealed that the activated sludge significantly affected the microbial community of the sediment. In particular, SST sludge resulted in significant increase in the number of microorganisms related to nitrification and sulfur metabolism to 10.68 and 10.97%, respectively. This was found to be important for degrading organics and promoting nitrogen removal. This study provides an efficient strategy for the treatment of black-odor sediment, and also realizes the complete utilization of waste activated sludge.


Subject(s)
Sewage , Bioreactors , Nitrification , Nitrogen , Odorants , Waste Disposal, Fluid , Wastewater , Water , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...