Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 901782, 2022.
Article in English | MEDLINE | ID: mdl-35937337

ABSTRACT

Salinity-alkalinity stress can remarkably affect the growth and yield of apple. Strigolactone (SL) is a class of carotenoid-derived compounds that functions in stress tolerance. However, the effects and mechanism of exogenous SL on the salinity-alkalinity tolerance of apple seedlings remain unclear. Here, we assessed the effect of SL on the salinity-alkalinity stress response of Malus hupehensis seedlings. Results showed that treatment with 100 µM exogenous SL analog (GR24) could effectively alleviate salinity-alkalinity stress with higher chlorophyll content and photosynthetic rate than the apple seedlings without GR24 treatment. The mechanism was also explored: First, exogenous GR24 regulated the expression of Na+/K+ transporter genes and decreased the ratio of Na+/K+ in the cytoplasm to maintain ion homeostasis. Second, exogenous GR24 increased the enzyme activities of superoxide, peroxidase and catalase, thereby eliminating reactive oxygen species production. Third, exogenous GR24 alleviated the high pH stress by regulating the expression of H+-ATPase genes and inducing the production of organic acid. Last, exogenous GR24 application increased endogenous acetic acid, abscisic acid, zeatin riboside, and GA3 contents for co-responding to salinity-alkalinity stress indirectly. This study will provide important theoretical basis for analyzing the mechanism of exogenous GR24 in improving salinity-alkalinity tolerance of apple.

2.
Front Plant Sci ; 12: 650485, 2021.
Article in English | MEDLINE | ID: mdl-34054896

ABSTRACT

Applying large amounts of potash fertilizer in apple orchards for high apple quality and yield aggravates KCl stress. As a phytoalexin, resveratrol (Res) participates in plant resistance to biotic stress. However, its role in relation to KCl stress has never been reported. Herein we investigated the role of Res in KCl stress response of Malus hupehensis Rehd., a widely used apple rootstock in China which is sensitive to KCl stress. KCl-stressed apple seedlings showed significant wilting phenotype and decline in photosynthetic rate, and the application of 100 µmol Res alleviated KCl stress and maintained photosynthetic capacity. Exogenous Res can strengthen the activities of peroxidase and catalase, thus eliminating reactive oxygen species production induced by KCl stress. Moreover, exogenous Res can decrease the electrolyte leakage by accumulating proline for osmotic balance under KCl stress. Furthermore, exogenous Res application can affect K+/Na+ homeostasis in cytoplasm by enhancing K+ efflux outside the cells, inhibiting Na+ efflux and K+ absorption, and compartmentalizing K+ into vacuoles through regulating the expression of K+ and Na+ transporter genes. These findings provide a theoretical basis for the application of exogenous Res to relieve the KCl stress of apples.

3.
Plant Physiol Biochem ; 159: 113-122, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33359960

ABSTRACT

AIMS: In recent years, the application of large amounts of potash fertilizer in apple orchards leads to worsening KCl stress. Strigolactone (SL), as a novel phytohormone, reportedly participates in plant tolerance to NaCl and drought stresses. However, the underlying mechanism and the effects of exogenous SL on the KCl stress of apple seedlings remain unclear. METHODS: We sprayed different concentrations of exogenous SL on Malus hupehensis Rehd. under KCl stress and measured the physiological indexes like, photosynthetic parameter, content of ROS, osmolytes and mineral element. In addition, the expressions of KCl-responding genes and SL-signaling genes were also detected and analyzed. RESULTS: Application of exogenous SL protected the chlorophyll and maintained the photosynthetic rate of apple seedlings under KCl stress. Exogenous SL strengthened the enzyme activities of peroxidase and catalase, thereby eliminating reactive oxygen species production induced by KCl stress, promoting the accumulation of proline, and maintaining osmotic balance. Exogenous SL expelled K+ outside of the cytoplasm and compartmentalized K+ into the vacuole, increased the contents of Na+, Mg2+, Fe2+, and Mn2+ in the cytoplasm to maintain the ion homeostasis under KCl stress. CONCLUSIONS: Exogenous SL can regulate photosynthesis, ROS migration and ion transport in apple seedlings to alleviate KCl stress.


Subject(s)
Heterocyclic Compounds, 3-Ring , Ion Transport , Lactones , Malus , Photosynthesis , Reactive Oxygen Species , Stress, Physiological , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Heterocyclic Compounds, 3-Ring/pharmacology , Ion Transport/drug effects , Lactones/pharmacology , Malus/drug effects , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Seedlings/drug effects , Stress, Physiological/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...