Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(3): 4181-4188, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194269

ABSTRACT

Precise control of charge carrier type and density of two-dimensional (2D) ambipolar semiconductors is the prerequisite for their applications in next-generation integrated circuits and electronic devices. Here, by fabricating a heterointerface between a 2D ambipolar semiconductor (hydrogenated germanene, GeH) and a ferroelectric substrate (PbMg1/3Nb2/3O3-PbTiO3, PMN-PT), fine-tuning of charge carrier type and density of GeH is achieved. Due to ambipolar properties, proper band gap, and high carrier mobility of GeH, by applying the opposite local bias (±8 V), a lateral polarization in GeH is constructed with a change of work function by 0.6 eV. Besides, the built-in polarization in GeH nanoflake could promote the separation of photoexcited electron-hole pairs, which lead to 4 times enhancement of the photoconductivity after poling by 200 V. In addition, a gradient regulation of the work function of GeH from 4.94 to 5.21 eV by adjusting the local substrate polarization is demonstrated, which could be used for data storage at the micrometer size by forming p-n homojunctions. This work of constructing such heterointerfaces provides a pathway for applying 2D ambipolar semiconductors in nonvolatile memory devices, photoelectronic devices, and next-generation integrated circuit.

2.
J Am Chem Soc ; 144(41): 18887-18895, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36194558

ABSTRACT

The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes. GeH possesses a superconducting transition with a critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa, while superconductivity remains. An abnormal increase of Tc up to 6.11 K was observed during the decompression process, while the GeH remained in the 2D amorphous phase. A combination study of in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, transition electron microscopy, and density functional theory simulations suggests that the superconductivity in 2D vdW GeH is attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure even in the form of an amorphous phase. The unique pressure-induced phase transition of GeH from 2D crystalline to 2D amorphous metal hydride provides a promising platform to study the mechanisms of amorphous hydride superconductivity.

3.
J Phys Condens Matter ; 34(7)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34757949

ABSTRACT

Heterostructures of two-dimensional (2D) layered materials with selective compositions play an important role in creating novel functionalities. Effective interface coupling between 2D ferromagnet and electronic materials would enable the generation of exotic physical phenomena caused by intrinsic symmetry breaking and proximity effect at interfaces. Here, epitaxial growth of bilayer Bi(110) on 2D ferromagnetic Fe3GeTe2(FGT) with large magnetic anisotropy has been reported. Bilayer Bi(110) islands are found to extend along fixed lattice directions of FGT. The six preferred orientations could be divided into two groups of three-fold symmetry axes with the difference approximately to 26°. Moreover, dI/dVmeasurements confirm the existence of interface coupling between bilayer Bi(110) and FGT. A variation of the energy gap at the edges of bilayer Bi(110) is also observed which is modulated by the interface coupling strengths associated with its buckled atomic structure. This system provides a good platform for further study of the exotic electronic properties of epitaxial Bi(110) on 2D ferromagnetic substrate and promotes potential applications in the field of spin devices.

4.
Nano Lett ; 21(21): 9233-9239, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34709835

ABSTRACT

Understanding quantum tunneling principles over two-dimensional (2D) van der Waals (vdW) ferromagnets at the atomic level is essential and complementary to the fundamental study of low-dimensional strong correlated systems and is critical for the development of magnetic tunneling devices. Here, we demonstrate a local electric-field controlled negative differential conductance (NDC) in 2D vdW ferromagnet Fe3GeTe2 (FGT) by using scanning tunneling microscopy (STM). The STM reveals that NDC shows an atomic position dependence and can be precisely modulated by altering the tunneling junction. The band shift together with electric-field-driven 3d-orbital occupancy modulates the sensitive magnetic anisotropic energy (MAE) in 2D FGT and consequently leads to electric-field-tunable NDC, which is also verified by theoretical simulation. This work realizes the electric-field-driven NDC in 2D ferromagnet FGT, which paves a way to design and develop applications based on 2D vdW magnets.

5.
Nano Lett ; 21(14): 6117-6123, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34279960

ABSTRACT

Heavy Fermion (HF) states emerge in correlated quantum materials due to the intriguing interplay between localized magnetic moments and itinerant electrons but rarely appear in 3d-electron systems due to high itinerancy of d-electrons. Here, an anomalous enhancement of Kondo screening is observed at the Kondo hole of local Fe vacancies in Fe3GeTe2 which is a recently discovered 3d-HF system featuring Kondo lattice and two-dimensional itinerant ferromagnetism. An itinerant Kondo-Ising model is established to reproduce the experimental results and provides insight into the competition between Ising ferromagnetism and Kondo screening. Our work explains the microscopic origin of the d-electron HF states in Fe3GeTe2 and inspires future studies of the enriched quantum many-body effects with Kondo holes.

6.
Small ; 16(23): e2000283, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32390335

ABSTRACT

As a rising star in the family of graphene analogues, germanene shows great potential for electronic and optical device applications due to its unique structure and electronic properties. It is revealed that the hydrogen terminated germanene not only maintains a high carrier mobility similar to that of germanene, but also exhibits strong light-matter interaction with a direct band gap, exhibiting great potential for photoelectronics. In this work, few-layer germanane (GeH) nanosheets with controllable thickness are successfully synthesized by a solution-based exfoliation-centrifugation route. Instead of complicated microfabrication techniques, a robust photoelectrochemical (PEC)-type photodetector, which can be extended to flexible device, is developed by simply using the GeH nanosheet film as an active electrode. The device exhibits an outstanding photocurrent density of 2.9 µA cm-2 with zero bias potential, excellent responsivity at around 22 µA W-1 under illumination with intensity ranging from 60 to 140 mW cm-2 , as well as short response time (with rise and decay times, tr = 0.24 s and td = 0.74 s). This efficient strategy for a constructing GeH-based PEC-type photodetector suggests a path to promising high-performance, self-powered, flexible photodetectors, and it also paves the way to a practical application of germanene.

SELECTION OF CITATIONS
SEARCH DETAIL
...