Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(25): 8900-8907, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37294930

ABSTRACT

Solar-driven interfacial evaporation has caught wide attention for water purification due to its green and environment-friendly properties. The key issue is how to effectively utilize solar radiation for evaporation. To fully understand the thermal management of the solar evaporation process, a multiphysics model has been built by the finite element method to clarify the heat transfer process for the improvement of solar evaporation. Simulation results indicate that the evaporation performance can be improved by tuning the thermal loss, local heating, convective mass transfer, and evaporation area. The thermal radiation loss of the evaporation interface and thermal convection loss to the bottom water should be avoided, and local heating is good for evaporation. Convection above the interface can improve evaporation performance, although it would enhance the thermal convective loss. In addition, evaporation also can be improved by increasing the evaporation area from 2D to 3D structures. Experimental results confirm that the solar evaporation ratio can be improved from 0.795 kg m-2 h-1 to 1.122 kg m-2 h-1 at 1 sun with a 3D interface and thermal insulation between the interface and bottom water. These results can provide a design principle for the solar evaporation system based on thermal management.

2.
ACS Appl Mater Interfaces ; 14(22): 26255-26263, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35622905

ABSTRACT

Solar interfacial evaporation for freshwater harvesting has received attention recently due to its high evaporation rate and environmental friendliness. Traditional interfacial evaporation mostly uses black porous polymers to absorb solar radiation and transport water which involve high thermal radiation loss to the environment and heat conduction loss to the bulk water. In addition, the freshwater collection ratio is usually lower than the solar evaporation ratio due to the high temperature of the condensation surface under solar irradiation, and no freshwater can be harvested at night due to the absence of sunlight. Here, we design an all-day freshwater-harvesting device using a solar-selective absorber (SSA) and sky radiative cooling. The prepared SSA with a high solar absorptance of 0.92 and a mid-infrared thermal emittance of 0.11 provides a great solar-thermal conversion performance (87.1% vs 51.4% for the black porous polymer at 25 °C) by minimizing the thermal radiation loss, and a hollow structure is also used to reduce the conductive heat loss, resulting in a high solar evaporation rate (1.23 vs 0.79 kg m-2 h-1 for the black porous polymer). In addition, a transparent radiative cooling polymer after plasma treatment is used for freshwater collection by enhancing the solar transmittance (0.92) and mid-infrared thermal emittance (0.91 at 25 °C). A theoretical freshwater collection rate of 0.044 kg m-2 h-1 is achieved at night-time. Outdoor results show that the all-day water harvesting is 0.87 kg m-2. This strategy to achieve all-day water collection by coupling with the SSA and transparent radiative cooling has potential application in the field of desalination and freshwater harvesting in tropical desert areas.

3.
Front Immunol ; 13: 1050876, 2022.
Article in English | MEDLINE | ID: mdl-36605209

ABSTRACT

Background: Exploring the cancer risks of rheumatoid arthritis (RA) patients with disease-modifying anti-rheumatic drugs (DMARDs) can help detect, evaluate, and treat malignancies at an early stage for these patients. Thus, a comprehensive analysis was conducted to determine the cancer risk of RA patients using different types of DMARDs and analyze their relationship with tumor mutational burdens (TMBs) reflecting immunogenicity. Methods: A thorough search of PubMed, EMBASE, Web of Science, and Medline was conducted up to 20 August 2022. Standardized incidence ratios (SIRs) were constructed with a random-effect model to determine risks for different types of malignancies in comparison with the general population. We also analyzed the correlation between SIRs and TMBs using linear regression (LR). Results: From a total of 22 studies, data on 371,311 RA patients receiving different types of DMARDs, 36 kinds of malignancies, and four regions were available. Overall cancer risks were 1.15 (SIR 1.15; 1.09-1.22; p < 0.001) and 0.91 (SIR 0.91; 0.72-1.14; p = 0.402) in RA populations using conventional synthetic DMARDs (csDMARDs) and biologic DMARDs (bDMARDs), respectively. RA patients taking csDMARDs displayed a 1.77-fold lung cancer risk (SIR 1.77; 1.50-2.09; p < 0.001), a 2.15-fold lymphoma risk (SIR 2.15; 1.78-2.59; p < 0.001), and a 1.72-fold melanoma risk (SIR 1.72; 1.26-2.36; p = 0.001). Correlation coefficients between TMBs and SIRs were 0.22 and 0.29 from those taking csDMARDs and bDMARDs, respectively. Conclusion: We demonstrated a cancer risk spectrum of RA populations using DMARDs. Additionally, TMBs were not associated with elevated cancer risks in RA patients following immunosuppressive therapy, which confirmed that iatrogenic immunosuppression might not increase cancer risks in patients with RA. Interpretation: Changes were similar in cancer risk after different immunosuppressive treatments, and there was a lack of correlation between SIRs and TMBs. These suggest that we should look for causes of increased risks from the RA disease itself, rather than using different types of DMARDs.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Lung Neoplasms , Humans , Immunosuppressive Agents/adverse effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/chemically induced , Antirheumatic Agents/adverse effects , Risk Factors , Immunosuppression Therapy , Lung Neoplasms/drug therapy
4.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638834

ABSTRACT

Strawberry (Fragaria × ananassa) fruit ripening is regulated by a complex of cellular signal transduction networks, in which protein kinases are key components. Here, we report a relatively simple method for assaying protein kinase activity in vivo and specifically its application to study the kinase, FaMPK6, signaling in strawberry fruit. Green fluorescent protein (GFP)-tagged FaMPK6 was transiently expressed in strawberry fruit and after stimuli were applied to the fruit it was precipitated using an anti-GFP antibody. The precipitated kinase activity was measured in vitro using 32P-ATP and myelin basic protein (MBP) as substrates. We also report that FaMPK6 is not involved in the abscisic acid (ABA) signaling cascade, which is closely associated with FaMPK6 signaling in other plant species. However, methyl jasmonate (MeJA), low temperature, and high salt treatments were all found to activate FaMPK6. Transient manipulation of FaMPK6 expression was observed to cause significant changes in the expression patterns of 2749 genes, of which 264 were associated with MeJA signaling. The data also suggest a role for FaMPK6 in modulating cell wall metabolism during fruit ripening. Taken together, the presented method is powerful and its use will contribute to a profound exploration to the signaling mechanism of strawberry fruit ripening.


Subject(s)
Fragaria/metabolism , Fruit/growth & development , Mitogen-Activated Protein Kinases/metabolism , Plant Proteins/metabolism , Signal Transduction , Fragaria/genetics , Fruit/genetics , Mitogen-Activated Protein Kinases/genetics , Plant Proteins/genetics
5.
World J Gastroenterol ; 27(36): 6004-6024, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34629816

ABSTRACT

Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.


Subject(s)
Histones , Pancreatic Neoplasms , Epigenesis, Genetic , Histones/metabolism , Humans , Methylation , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Protein Processing, Post-Translational
6.
Hortic Res ; 8(1): 60, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33750770

ABSTRACT

An effector-reporter system is a powerful tool used to study cellular signal transduction, but this technique has been traditionally used in protoplasts. A similar system to study cellular signal transduction in fruits has not yet been established. In this study, we aimed to establish an effector-reporter system for strawberry fruit, a model nonclimacteric fruit. We first investigated the characteristics of transient gene expression in strawberry fruits and found marked variation in gene expression levels among individual fruits, and this variation has complicated the establishment of a technical system. To overcome this difficulty, we investigated a sampling strategy based on a statistical analysis of the activity pattern of four different reporters (GUS, GFP, FLuc, and RLuc) among individual fruits and combinations of pairs of reporters (GUS/GFP and RLuc/FLuc). Based on an optimized sampling strategy, we finally established a step-by step protocol for the effector/reporter assay. Using FaMYB10 and FaWRKY71 as the effectors and GUS driven by the FaCHS promoter as the reporter, we demonstrated that this effector/reporter system was practical and reliable. This effector/reporter technique will contribute to an in-depth exploration of the signaling mechanism for the regulation of strawberry fruit ripening.

SELECTION OF CITATIONS
SEARCH DETAIL
...