Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(9): 2525-8, 2011 Sep.
Article in Chinese | MEDLINE | ID: mdl-22097863

ABSTRACT

Yb3+ doped double-cladding large-mode-area micro-structured optical fibers (Micro-structured fibers, MSF) are the ideal medium for the super high-power optical fiber laser applications. In the present paper, the authors fabricated the Yb3+ doped silica-based glass using the method of non-chemical vapor deposition, and fabricated the Yb3+ doped double-cladding large-mode-area MSF by stack-drawing method using this glass as the core of MSF, according to the design requirements. Fluorescence spectrum of the MSF was obtained using Ti: sapphire femtosecond laser with the wavelength of 975 nm and LD laser with the wavelength of 980 nm as pumping source. The experimental results show that the optical fiber has strong fluorescence at the wavelength of 1 050 nm, and it can inhibit generation of cooperative luminescence effectively.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(9): 2485-8, 2009 Sep.
Article in Chinese | MEDLINE | ID: mdl-19950658

ABSTRACT

Two kinds of Yb3+ doped silicate laser glass with little difference were produced by high temperature of melting process. The absorption and emission spectra of the two glass samples were tested by the correlative spectrographs; the integral absorption cross section, stimulated emission cross section, fluorescence line-width, fluorescence lifetime, least particle count, saturation pump intensity and least pump intensity of the Yb3+ -doped laser glasses were calculated respectively, and by comparison it was found that the chart of the absorption cross section is similar to the stimulated emission cross section calculated by the reciprocity method, and is very different from the stimulated emission cross section calculated by the Fuchbauer-Ladenburger method. This result is precisely in line with the theoretical analysis. The line-types of the absorption spectra of the two glass samples are almost the same, and the first peak value of absorption is located at 975 nm while the second peak value is at 908 nm. As the two components of the samples are not very different, the accord of the line-types of the absorption spectra indicates that the makeup of the glass material is the primary factor influencing the line-type of the absorption spectra. The fluorescence spectra of the two glass samples are very different, and the first fluorescence peak value of sample one is located at 993 nm with the second peak value at 1029 nm, while the first fluorescence peak value of sample two is located at 1 035 nm with the second peak value at 994 nm. The cause of the major difference in the fluorescence spectra of two samples lies in the different doping density of Yb3+. By comparison we found that the laser performance of sample two is better than that of sample one. The test shows that both samples are suitable for drawing fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...