Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 27(21): 3339-3353, 2023 11.
Article in English | MEDLINE | ID: mdl-37581474

ABSTRACT

It has been reported that Banxia-houpo decoction (BXHPD) serves as the anti-depressant treatment for a mild and severe depressive disease with limited side effects. The present study was performed to evaluate the protective effect of BXHPD on chronic unpredicted mild stress (CUMS)-induced depression and explore its effect on TrkA/Akt-mediated microglia polarization. The CUMS procedure was carried out, and the mice were intragastrically treated with BXHPD once daily. The selective TrkA inhibitor GW441756 was applied to further investigate the role of TrkA in BXHPD-mediated microglia polarization. The behaviour test including open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), tail suspension test (TST) and forced swim test (FST) was performed. The concentrations of pro-inflammatory cytokines IL-6, TNF-α, IL-1ß, IL-12 and anti-inflammatory cytokines IL-4, IL-10 were determined using Enzyme-linked immunosorbent assay. The population of Iba1+ cells and the length of microglia processes were observed under the fluorescence microscope. The mRNA expressions of Arg1, Ym1 and Fizzl1 were measured by PCR. The protein expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3 were detected by western blot. Our results showed that BXHPD attenuated CUMS-induced depressive-like behaviour, promoted anti-inflammatory cytokines, inhibited pro-inflammatory cytokines, suppressed microglia activation, promoted M2 phenotype-specific indices and upregulated the expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3. The above beneficial effect of BXHPD can be blocked by TrkA inhibitor GW441756. This work demonstrated that BXHPD exerted an anti-depressant effect by promoting M2 phenotype microglia polarization via TrkA/Akt pathway.


Subject(s)
Depression , Proto-Oncogene Proteins c-akt , Mice , Animals , Depression/drug therapy , Depression/etiology , Depression/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Microglia/metabolism , Behavior, Animal , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , Hippocampus/metabolism
2.
Eur J Pharmacol ; 907: 174202, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34048739

ABSTRACT

Parkinson's disease (PD) is a common neurological disorder worldwide, characterized by loss of dopaminergic neurons and decrease of dopamine content. Mitochondria plays an important role in the development of PD. Adenosine 5'-monophosphate-activated protein kinase (AMPK), glycogen synthase kinase 3 (GSK-3ß) and protein phosphatase 2A (PP2A) are all key proteins that regulate mitochondrial metabolism and apoptosis, and they are involved in a variety of neurodegenerative diseases. Here, we aimed to explore the involvement of mitochondrial dysfunction and apoptosis in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP)-induced PD mice and MPP+ iodide-induced PC12 cells. MPTP-induced mice were subjected to behavioral testing to assess PD-like behaviors. Various molecular biological techniques including ELISA, Western blot, TUNEL assay, flow cytometry, and the important instruments Seahorse XF24 Extracellular and high performance liquid chromatography (HPLC), were used to identify the underlying molecular events of mitochondria. Treatment with the AMPK activator GSK621 dramatically ameliorated PD by increasing the levels of dopamine and rescuing the loss of dopaminergic neurons, which is dependent on the mitochondrial pathway. Moreover, regulation of AMPK/GSK-3ß/PP2A pathway-related proteins by GSK621 was partially inhibited the development of PD, suggesting a negative feedback loop exists between AMPK action and mitochondrial dysfunction-mediated apoptosis. Our data preliminarily indicated that mitochondrial dysfunction and apoptosis in the pathogenesis of PD might be mediated by AMPK/GSK-3ß/PP2A pathway action, which might be a promising new option for future therapy of PD.


Subject(s)
Parkinson Disease , Animals , Mitochondria , Rats , Signal Transduction
3.
Int Immunopharmacol ; 97: 107614, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33892299

ABSTRACT

Overexposure to ultraviolet B (UVB) rays can cause damage to the skin. Liquiritin has a variety of pharmacological effects, such as anti-inflammatory and antioxidant. In the present study, the effect of liquiritin on UVB irradiated rat skin was investigated. Results showed that UVB irradiation caused erythema and wrinkles on the skin surface, as well as thickening and loss of elasticity of the epidermis and a significant increase in the level of ROS in the skin tissue. At the same time, western blot detected an increase in nuclear factor kappa-B (NF-κB) and matrix metalloproteinases (MMPs) and Elisa also detected an increase in pro-inflammatory factors. Therefore, we hypothesized that UVB irradiation-induced damage is associated with inflammation. Interestingly, application of liquiritin to exposed skin of rats reduced the increase in ROS, pro-inflammatory factors, and MMPs caused by UVB irradiation and increased the levels of Sirtuin3 (SIRT3) and Collagen α1. In addition, after intraperitoneal injection of the SIRT3 inhibitor 3-TYP in rats, the protective effect of liquiritin against UVB damage was found to be diminished. These results suggested that promotion of SIRT3 with liquiritin inhibits UVB-induced production of pro-inflammatory mediators, possibly acting through the SIRT3/ROS/NF-κB pathway. In conclusion, this study suggests that liquiritin is an effective drug candidate for the prevention of UVB damage.


Subject(s)
Flavanones , Glucosides , Photosensitivity Disorders , Skin Neoplasms , Skin , Ultraviolet Rays , Animals , Humans , Rats , Collagen/agonists , Collagen/metabolism , Disease Models, Animal , Flavanones/pharmacology , Flavanones/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , NF-kappa B/metabolism , Oxidative Stress/drug effects , Oxidative Stress/immunology , Photosensitivity Disorders/etiology , Photosensitivity Disorders/pathology , Photosensitivity Disorders/prevention & control , Proteolysis/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Sirtuins/metabolism , Skin/drug effects , Skin/immunology , Skin/pathology , Skin/radiation effects , Skin Neoplasms/etiology , Skin Neoplasms/pathology , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects
4.
Front Pharmacol ; 11: 598555, 2020.
Article in English | MEDLINE | ID: mdl-33281606

ABSTRACT

Lung cancer is the most common malignant tumor and is the leading cause of cancer-related deaths worldwide. Extraction of bioactive substances from herbs is considered as an alternative method to traditional treatment. 6-Gingerol is a naturally occurring phenol found in ginger that can be used to treat tumors and suppress inflammation. To determine whether 6-Gingerol can be used as a therapeutic agent for tumors. In this study, tumor-bearing mice were used as an animal model and A549 as a cell model. Western blot was used to detect the expression of autophagy related proteins ubiquitin-specific peptidase 14 (USP14), Beclin1, microtubule-associated protein light chain 3 (LC3) and ferroptosis related proteins nuclear receptor coactivator 4 (NCOA4), ferritin heavy chain 1 (FTH1), transferrin receptor 1 (TfR1), glutathione peroxidase 4 (GPX4), activating transcription factor4 (ATF4) in vivo and in vitro. MTT and EdU were used to detect the viability of A549 cells. H&E and immunofluorescence were used to localize and detect the expression of proteins. The detection of reactive oxygen species was performed using fluorescence probes. It was found that the administration of 6-Gingerol decreased the expression of USP14, greatly increased the number of autophagosomes, reactive oxygen species (ROS) and iron concentration, decreased the survival and proliferation rate of A549 cells, and significantly decreased tumor volume and weight. The results indicate that 6-Gingerol inhibits lung cancer cell growth via suppression of USP14 expression and its downstream regulation of autophagy-dependent ferroptosis, revealing the function and efficacy of 6-Gingerol as a therapeutic compound in A549 and its possible mechanism of action.

5.
Front Pharmacol ; 11: 577062, 2020.
Article in English | MEDLINE | ID: mdl-33132912

ABSTRACT

α-Cyperone (Cy) is a major active compound of Cyperus rotundus that has various pharmacological activities. But whether Cy possesses antidepressant effect is unknown. In this study, we exposed mice to chronic unpredictable mild stress (CUMS) with or without intervention with Cy. Our results showed that Cy significantly improved the depressive phenotypes in sucrose preference test, tail suspension test and forced swimming test. Meanwhile, increased SIRT3 expression, reduced ROS production and activated NF-κB signal were detected in the hippocampus of mice. NLRP3 inflammasome related proteins including NLRP3, ASC, Caspase-1, IL-1ß, IL-18 and GSDMD-N were downregulated after Cy administration. Synaptic proteins including Synapsin-1 and PSD-95 and dendritic spine density were improved after Cy treatment. Moreover, the protective effects of Cy in CUMS mice were compromised when co-administrated with SIRT3 inhibitor 3-TYP. Taken together, these findings suggested that Cy has therapeutic potential for treating depression and that this antidepressant effect may be attributed to SIRT3 stimulated neuroplasticity enhancement by suppressing NLRP3 inflammasome.

6.
ACS Chem Neurosci ; 11(10): 1495-1503, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32364698

ABSTRACT

Inflammation plays a key role in the pathogenesis of depression and antidepressant therapies. Astragalin (AST) is a bioactive flavonoid that possesses an anti-inflammatory property. However, the antidepressant action of astragalin has not been addressed. In this study, we explored the antidepressant effects of astragalin and its underlying mechanism. Our results showed that AST significantly improved the behavioral defects in chronic unpredictable mild stress (CUMS) model, promoted SIRT1 expression, and decreased the protein levels of NF-κB p65, NLRP3, cleaved capase-1, cleaved IL-1ß and cleaved gasdermin D in the hippocampus. Immunohistochemistry revealed AST mitigated CUMS-induced microglia overactivation. In vitro, AST profoundly increased the cell viability in lipopolysaccharides (LPS) and adenosine triphosphate (ATP) treated BV2 cells, with upregulated SIRT1 expression and downregulated protein levels of nuclear NF-κB p65, NLRP3, cleaved capase-1, and cleaved gasdermin D. Declined cleavage of gasdermin D was observed after AST administration in immunocytochemistry. Nevertheless, the in vivo and in vitro effects of AST were compromised by SIRT1 inhibitor EX-527. These results indicated that AST possessed an antidepressant property, which was dependent on SIRT1 signaling modulated NLRP3 inflammasome deactivation.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Antidepressive Agents/pharmacology , Kaempferols , NF-kappa B , Sirtuin 1
7.
Curr Drug Targets ; 20(15): 1572-1586, 2019.
Article in English | MEDLINE | ID: mdl-31215388

ABSTRACT

Quinolizidine alkaloids, a main form of alkaloids found in the genus Sophora, have been shown to have many pharmacological effects. This review aims to summarize the photochemical reports and biological activities of quinolizidine alkaloids in Sophora. The collected information suggested that a total of 99 quinolizidine alkaloids were isolated and detected from different parts of Sophora plants, represented by lupinine-type, cytisine-type, sparteine-type, and matrine-type. However, quality control needs to be monitored because it could provide basic information for the reasonable and efficient use of quinolizidine alkaloids as medicines and raw materials. The nonmedicinal parts may be promising to be used as a source of quinolizidine alkaloid raw materials and to reduce the waste of resources and environmental pollution. In addition, the diversity of chemical compounds based on the alkaloid scaffold to make a biological compound library needs to be extended, which may reduce toxicity and find new bioactivities of quinolizidine alkaloids. The bioactivities most reported are in the fields of antitumor activity along with the effects on the cardiovascular system. However, those studies rely on theoretical research, and novel drugs based on quinolizidine alkaloids are expected.


Subject(s)
Alkaloids/pharmacology , Plant Extracts/pharmacology , Quinolizidines/pharmacology , Sophora/chemistry , Alkaloids/isolation & purification , Alkaloids/standards , Alkaloids/therapeutic use , Analgesics/isolation & purification , Analgesics/pharmacology , Analgesics/therapeutic use , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antimetabolites/isolation & purification , Antimetabolites/pharmacology , Antimetabolites/therapeutic use , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/standards , Antineoplastic Agents/therapeutic use , Cardiovascular Agents/isolation & purification , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Drug Development , Drug Discovery , Humans , Insecticides , Plant Extracts/isolation & purification , Plant Extracts/standards , Plant Extracts/therapeutic use , Quality Control , Quinolizidines/isolation & purification , Quinolizidines/standards , Quinolizidines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...