Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 271: 110969, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32583802

ABSTRACT

To gain a better understanding of the microbial community in salt-freshwater mixing zones, in this study, the influence of seasonal variation on the groundwater microbial community was evaluated by high throughput 16S rDNA gene sequencing. The results showed that notable changes in microbial community occurred in a salt-freshwater mixing zone and the groundwater samples in the dry season were more saline than those in the wet season. The increase in precipitation during the wet season relieved local seawater intrusion. Microbial diversity varied greatly with seasons, while no obvious change pattern was found. Proteobacteria was identified as the dominant phylum in all samples. The genus Hydrogenophaga dominated in the dry season, while the genus Acidovorax dominated in the wet season. Dissolved oxygen affected the diversity of the microbial communities during the dry and wet season, while groundwater level had a strong influence on the structure of microbial communities. Phylogenetic molecular network analysis of the microbial communities indicated that increased seawater intrusion led to a more compact microbial network and strengthening the groundwater microbial interactions.


Subject(s)
Groundwater , Microbiota , Fresh Water , Phylogeny , Seasons
2.
Sci Total Environ ; 678: 574-584, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31078848

ABSTRACT

A salt-freshwater transition zone due to seawater intrusion to groundwater promotes changes in microbial diversity and community composition in a coastal aquifer. The main purpose of this study is to explore the effect of seawater intrusion on the groundwater quality in a salt-freshwater transition zone and identify the microbial fingerprints of seawater intrusion. The changes in microbial community diversity response to the seawater intrusion were characterized by comparing the community structures of the microbes in fresh groundwater, seawater, and salty groundwater from various monitoring wells at different depths using the high throughput 16S rDNA gene sequencing. Results show that seawater had the lowest taxon richness and evenness, and the irrigation water had the highest richness and evenness. Statistical analysis showed that DO%, ORP, and Cl- affected microbial distribution in the groundwater; while DO% was a main environmental factor influencing microbial community diversity. The analysis of microbial community structures indicates that the order Oceanospirillales and the family Alteromonadaceae could be used as indicators of seawater intrusion.


Subject(s)
Fresh Water/microbiology , Groundwater/microbiology , Microbiota , Seawater/microbiology , China , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...