Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 143(4): 628-38, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21074052

ABSTRACT

Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.


Subject(s)
Calcium Channels/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Pain/genetics , Adult , Animals , Back Pain/genetics , Calcium Channels/metabolism , Drosophila Proteins/metabolism , Gene Knockdown Techniques , Genome-Wide Association Study , Hot Temperature , Humans , Mice , Polymorphism, Single Nucleotide , RNA Interference
2.
Cell ; 141(1): 142-53, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20371351

ABSTRACT

Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.


Subject(s)
Drosophila melanogaster/physiology , Models, Animal , Animals , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Female , Genome-Wide Association Study , Heart/embryology , Heart/physiology , Humans , Male , Mice , Mice, Knockout , Promoter Regions, Genetic , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...