Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1133166, 2023.
Article in English | MEDLINE | ID: mdl-36949954

ABSTRACT

N-4 cytidine acetylation (ac4C) is an epitranscriptome modification catalyzed by N-acetyltransferase 10 (NAT10) and is essential for cellular mRNA stability, rRNA biosynthesis, cell proliferation, and epithelial-mesenchymal transition (EMT). Numerous studies have confirmed the inextricable link between NAT10 and the clinical characteristics of malignancies. It is unclear, however, how NAT10 might affect pancreatic ductal adenocarcinoma. We downloaded pancreatic ductal adenocarcinoma patients from the TCGA database. We obtained the corresponding clinical data for data analysis, model construction, differential gene expression analysis, and the GEO database for external validation. We screened the published papers for NAT10-mediated ac4C modifications in 2156 genes. We confirmed that the expression levels and genomic mutation rates of NAT10 differed significantly between cancer and normal tissues. Additionally, we constructed a NAT10 prognostic model and examined immune infiltration and altered biological pathways across the models. The NAT10 isoforms identified in this study can effectively predict clinical outcomes in pancreatic ductal adenocarcinoma. Furthermore, our study showed that elevated levels of NAT10 expression correlated with gemcitabine resistance, that aberrant NAT10 expression may promote the angiogenic capacity of pancreatic ductal adenocarcinoma through activation of the TGF-ß pathway, which in turn promotes distal metastasis of pancreatic ductal adenocarcinoma, and that NAT10 knockdown significantly inhibited the migration and clonogenic capacity of pancreatic ductal adenocarcinoma cells. In conclusion, we proposed a predictive model based on NAT10 expression levels, a non-invasive predictive approach for genomic profiling, which showed satisfactory and effective performance in predicting patients' survival outcomes and treatment response. Medicine and electronics will be combined in more interdisciplinary areas in the future.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Gemcitabine , Acetyltransferases , Immunity , Pancreatic Neoplasms
2.
Comput Math Methods Med ; 2022: 4640849, 2022.
Article in English | MEDLINE | ID: mdl-36118824

ABSTRACT

Traditional Chinese medicine (TCM) is applied in the anticancer adjuvant therapy of various malignancies and pancreatic cancer included. Xiaoji recipe consists several TCM materials with anticancer activities. In our work, we intended to analyze the molecular targets as well as the underlying mechanisms of Xiaoji recipe against pancreatic cancer. A total of 32 active components and 522 potential targets of Xiaoji recipe were selected using the TCMSP and SwissTargetPrediction databases. The potential target gene prediction in pancreatic cancer was performed using OMIM, Disgenet, and Genecards databases, and totally, 998 target genes were obtained. The component-disease network was constructed using the Cytoscape software, and 116 shared targets of pancreatic cancer and Xiaoji recipe were screened out. As shown in the protein-protein interaction (PPI) network, the top 20 hub genes such as TP53, HRAS, AKT1, VEGFA, STAT3, EGFR, and SRC were further selected by degree. GO and KEGG functional enrichment analysis revealed that Xiaoji recipe may affect pancreatic cancer progression by targeting the PI3K/AKT and MAPK signaling pathways. Moreover, we performed in vitro assays to explore the effect of Xiaoji recipe on pancreatic cancer cells. The results revealed that Xiaoji recipe suppressed the viability and migration and promoted the apoptosis of pancreatic cancer cells via the inactivation of PI3K/AKT, MAPK, and STAT3 pathways. The findings of our study suggested the potential of Xiaoji recipe in the targeting therapy of pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Humans , Network Pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...