Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38730859

ABSTRACT

The wide size range and high tendency to agglomerate of in-situ TiB2 particles in reinforced Al matrix composites introduce great difficulties in their size characterization. In order to use a nanoparticle size analyzer (NSA) to obtain the precise size distribution of TiB2 particles, a controlled size characterization process has been explored. First, the extraction and drying processes for TiB2 particles were optimized. In the extraction process, alternated applications of magnetic stirring and normal ultrasound treatments were proven to accelerate the dissolution of the Al matrix in HCl solution. Furthermore, freeze-drying was found to minimize the agglomeration tendency among TiB2 particles, facilitating the acquisition of pure powders. Such powders were quantitatively made into an initial TiB2 suspension. Second, the chemical and physical dispersion technologies involved in initial TiB2 suspension were put into focus. Chemically, adding PEI (M.W. 10000) at a ratio of mPEI/mTiB2 = 1/30 into the initial suspension can greatly improve the degree of TiB2 dispersion. Physically, the optimum duration for high-energy ultrasound application to achieve TiB2 dispersion was 10 min. Overall, the corresponding underlying dispersion mechanisms were discussed in detail. With the combination of these chemical and physical dispersion specifications for TiB2 suspension, the bimodal size distribution of TiB2 was able to be characterized by NSA for the first time, and its number-average diameter was 111 ± 6 nm, which was reduced by 59.8% over the initial suspension. Indeed, the small-sized and large-sized peaks of the TiB2 particles characterized by NSA mostly match the results obtained from transmission electron microscopy and scanning electron microscopy, respectively.

2.
Materials (Basel) ; 15(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35407773

ABSTRACT

Wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT), as a kind of clean and advanced technology, has been widely researched recently. It was analyzed in detail for the microstructure and mechanical properties of WAAM-CMT printed TiB2/AlSi7Mg0.6 samples fore-and-aft heat treatment in this study. Compared with the grain size of casted AlSi7Mg0.6 samples (252 µm), the grain size of WAAM-CMT printed AlSi7Mg0.6 samples (53.4 µm) was refined, showing that WAAM-CMT process could result in significant grain refinement. Besides, the grain size of WAAM-CMT printed TiB2/AlSi7Mg0.6 samples was about 35 µm, revealing that the addition of TiB2 particles played a role in grain refinement. Nevertheless, the grain size distribution was not uniform, showing a mixture of fine grain and coarse grain, and the mechanical properties were anisotropic of the as-printed samples. This study shows that T6 heat treatment is an efficient way to improve the nonuniform microstructure and eliminate the anisotropy in mechanical properties.

3.
Materials (Basel) ; 13(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076227

ABSTRACT

In recent years, the motor has been increasingly used to replace the conventional gasoline engine for carbon emission reduction, and the high-performance motor is urgently required. The stator and rotor in a motor are made of hundreds of joined and laminated electrical steels. This paper covers the current research in joining the laminated electrical steels for the motor application, together with the critical assessment of our understanding. It includes the representative joining method, modeling of the joining process, microstructure of the weld zone, mechanical strength and magnetic properties. The gaps in the scientific understanding, and the research needs for the expansion of joining laminated electrical steels, are provided.

4.
Materials (Basel) ; 12(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31690013

ABSTRACT

In this work, the combination of cold rolling with post-aging treatment is developed to achieve the optimal strength-ductility for the in situ nano TiB2/Al-Cu-Mg composite. The microstructure and mechanical properties of the composite subjected to 20% thickness reduction of cold rolling at room temperature and their evolutions upon post-aging at different temperatures were investigated by means of a tensile test, differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy. It was found that the TiB2 particles were effective in dislocation pinning and accumulation during the cold-rolling process. The tensile tests indicated that both the yield and ultimate tensile strengths of the cold-rolling sample increased a lot due to the dislocation strengthening and precipitation strengthening generated by dynamic precipitation during cold rolling in comparison with the conventional T6 sample. After aging at 100 °C/12 h, the elongation to failure reached ~8.4%, which was higher than the conventional T6 sample. Meanwhile, there was also a dramatic increase of strength. The yield and ultimate tensile strengths are ~644 MPa and ~726 MPa, respectively. This remarkable strength-ductility combination was due to the modified microstructure caused prior to artificial aging by the cold-rolling method and the formation of nanosized Guinier-Preston-Bagaryatsky (GPB) zones. The underlying mechanisms related to the superior strength-ductility combination were discussed regarding the microstructural characteristics in the composite.

5.
Materials (Basel) ; 12(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398869

ABSTRACT

Wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT) has aroused wide public concern in recent years as one of the most advanced technologies for manufacturing components with complex geometries. However, the microstructure and mechanical properties of the parts fabricated by WAAM-CMT technology mostly are intolerable for engineering application and should be improved necessarily. In this study, heat treatment was proposed to optimize the microstructure and enhance mechanical properties in the case of AlSi7Mg0.6 alloy. After heat treatment, the division between coarse grain zone and fine grain zone of as-deposited samples seemed to disappear and the distribution of Si and Mg elements was more uniform. What is more, the yield strength and ultimate tensile strength were improved significantly, while the ductility could be sustained after heat treatment. The improvement of strength is attributed to precipitation strengthening, and the shape change of Si phase. No reduction in ductility is due to the higher work hardening rate caused by nanostructured precipitate. It is proved that heat treatment as an effective method can control the microstructure and enhance comprehensive mechanical properties, which will boost rapid development of WAAM industrial technology.

6.
Materials (Basel) ; 12(9)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083404

ABSTRACT

The first-principles methods, based on the density function theory, are performed to calculate the properties of pure and doped Al3Sc. The structural stability, and mechanical and electronic properties of L12-Al3Sc1-xMx (M = Zr, Ti, Y, and Li) have been investigated. A negative formation enthalpy for L12-Al3Sc1-xMx indicated that all doped structures were stable, and Al24Sc6Zr2 was found to be the most stable. The elastic constants, elastic moduli and Debye temperatures of Al3Sc, with different doping elements and different doping concentrations, were calculated to explore the influences of doping on the mechanical properties and Debye temperatures of Al3Sc. Furthermore, the calculated results suggested that both Al24Sc6Zr2 and Al24Sc6Ti2 could optimize the mechanical properties. Finally, the electronic properties based on the analyses of densities of states and electron density distributions, have been performed, to explain the underlying mechanisms for the structural and mechanical properties of the L12-Al3Sc1-xMx structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...