Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Manag Res ; 11: 8209-8218, 2019.
Article in English | MEDLINE | ID: mdl-31686913

ABSTRACT

BACKGROUND: Despite numerous discoveries regarding the molecular genesis and progression of primary cancers, the biology of metastasis remains poorly understood. Compared to very large numbers of circulating tumor cells that are now known to accompany nearly all cancers, a relatively limited number of lesions actually develop in most patients with metastases. We hypothesized that phenotypic changes driven by differential gene expression in a finite subpopulation of tumor cells render those cells capable of metastasis and sought to identify key pathways through analysis of gene expression in primary and metastatic lesions from the same patients. METHODS: We compared whole-genome expression in 4 matched samples of primary and metastatic sarcoma, then evaluated candidate genes with differential expression via quantitative PCR in 30 additional matched sets, tumor tissue immunostaining, siRNA loss-of-function in a sarcoma cell migration assay, and clinical correlation with overall and disease-free survival after metastasectomy. RESULTS: Comparison of microarray signals identified differential expression of cell adhesion genes, including upregulation of KRT7 and MUC1 in metastases; KRT7 and MUC1 upregulation was confirmed in 22 (73%) and 20 (67%) matched sets of metastatic/primary tumors, respectively. Silencing of KRT7 and MUC1 via targeted siRNAs suppressed sarcoma cell migration in vitro, and a significant correlation (two-sided) was observed between both KRT7 and MUC1 expression in metastases and overall patient survival. CONCLUSION: KRT7 and MUC1 may play a significant role in enabling sarcoma metastasis, and they may therefore be important prognostic biomarkers as well as potential targets for therapeutic prevention of metastasis.

2.
Neuroscience ; 417: 57-69, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31404586

ABSTRACT

An increasing number of studies have demonstrated the benefits of young individual-derived blood for aging-related diseases. However, the effects of young blood on the cognitive and cholinergic transmission defects in aging-associated Alzheimer's disease (AD) remain elusive. In the current study, we showed that young blood serum delivered intravenously attenuated deficits in hippocampal-dependent learning and memory, alleviated hippocampal Aß plaque pathology, restored synapse formation and synaptic plasticity, repaired the hippocampal cholinergic circuit, and triggered several canonical neuroprotective mechanisms [including repressor element 1-silencing transcription factor (REST)/Forkhead box protein O1 (FOXO1) signaling] in aged AD model mice. However, pharmacological blockage of hippocampal cholinergic activity nearly abrogated the neuroprotective actions of young blood serum in AD mice. Thus, our findings suggest that exogenous young blood serum exerts therapeutic effects on AD-associated cognitive disorders and pathology by promoting hippocampal cholinergic input and simultaneously activating other neuroprotective mechanisms.


Subject(s)
Aging/metabolism , Alzheimer Disease/therapy , Blood Transfusion , Cholinergic Neurons/metabolism , Hippocampus/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/physiopathology , Learning , Male , Memory , Mice , Mice, Inbred C57BL , Mice, Transgenic , Serum
3.
Sci Rep ; 8(1): 15363, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337605

ABSTRACT

Copy number gains in cancer genomes have been shown to induce oncogene expression and promote carcinogenesis; however, their role in regulating oncogenic microRNAs (onco-miRNAs) remains largely unknown. Our aim was to identify onco-miRNAs induced by copy number gains in human squamous cell carcinoma (Sq) of the lung. We performed a genome-wide screen of onco-miRNAs from 245 Sqs using data sets from RNA-sequencing, comparative genomic hybridization, and the corresponding clinical information from The Cancer Genome Atlas. Among 1001 miRNAs expressed in the samples, 231 were correlated with copy number alternations, with only 11 of these being highly expressed in Sq compared to adenocarcinoma and normal tissues. Notably, miR-296-5p, miR-324-3p, and miR-3928-3p expression was significantly associated with poor prognosis. Multivariate analysis using the Cox proportional hazards model showed that miRNA expression and smoking were independent prognostic factors and were associated with poor prognosis. Furthermore, the three onco-miRNAs inhibited FAM46C to induce MYC expression, promoting proliferation of Sq cells. We found that copy number gains in Sq of the lung induce onco-miRNA expression that is associated with poor prognosis.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Case-Control Studies , Cell Proliferation , Female , Follow-Up Studies , Gene Expression Profiling , Humans , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Prognosis , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...