Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 803
Filter
1.
Medicine (Baltimore) ; 103(21): e38200, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787983

ABSTRACT

Analyzing the effect of intraoperative autotransfusion on serum electrolytes, inflammatory response and cellular immune response in puerperae undergoing cesarean section. This study is a retrospective study of 60 women who underwent cesarean section in our hospital from January 2022 to January 2023. The subjects were divided into 2 groups according to the blood transfusion mode of the patients. The differences in blood transfusion volume, blood transfusion volume, serum electrolyte, inflammatory response, cellular immune function, coagulation function and prognosis were compared between the 2 groups. The intraoperative blood transfusion volume, postoperative feeding time, the activity time since getting out of bed, the time of physical recovery and hospital stay in the observation group were lower compared to those of the control group, but the intraoperative crystal infusion volume and the colloid infusion volume in the observation group were higher compared to those of the control group (P < .05). Ca2+ concentrations of the observation group and the control group were lower compared with those of their same groups before surgery (P < .05), however, there were no statistically significant differences in the comparison of the Ca2+ concentrations between the observation group and the control group (P > .05). At 1d postoperatively, IL-1ß, IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) were all higher (P < .05) and CD3+, CD4+ and CD4+/CD8+ were all lower (P < .05) in the observation group and the control group compared with those of their same groups before surgery. The IL-1 ß, IL-6, and GM-CSF of the observation group were decreased compared to those of the control group (P < .05) and CD3+, CD4+, CD4+/CD8+ of the observation group were elevated compared to those of the control group (P < .05). Both autotransfusion and allogeneic blood transfusions during maternal cesarean section can attenuate the inflammatory response and have no significant inhibition of coagulation, and autotransfusion have less effect on the cellular immune response, are more effective in attenuating the inflammatory response, and significantly improve prognosis, although changes in Ca2+ concentration after transfusion require attention.


Subject(s)
Cesarean Section , Electrolytes , Immunity, Cellular , Humans , Female , Cesarean Section/adverse effects , Cesarean Section/methods , Retrospective Studies , Adult , Pregnancy , Electrolytes/blood , Inflammation/blood , Inflammation/immunology , Blood Transfusion, Autologous/methods , Intraoperative Care/methods
2.
ACS Nano ; 18(19): 12580-12587, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696339

ABSTRACT

Osmotic energy from proton gradients in industrial acidic wastewater can be harvested and converted to electricity through membranes, making it a renewable and sustainable power source. However, the currently designed membranes for harvesting proton gradient energy in acidic wastewater cannot simultaneously achieve excellent chemical/mechanical stability and high power density under a large-scale area and require high cost and complex operations. Here, we demonstrate that commercial Nafion membranes with high chemical/mechanical stability and proton transport selectivity can generate a power density of 5.1 W/m2 for harvesting osmotic energy from proton gradients under a test area of 0.2 mm2, which exceeds the commercial goal of 5.0 W/m2. Even under a test area of 12.5 mm2, a power density of 2.1 W/m2 can be achieved under a strong acid condition. In addition, the heat can greatly promote proton transport, and the power density is increased, i.e., 8.1 W/m2 at 333 K (5.1 W/m2 at 293 K) under a test area of 0.2 mm2. By matching membranes with ion selectivity, our work demonstrates the potential of Nafion membranes for harvesting proton gradient energy in acidic wastewater and provides an approach for large-scale conversion of osmotic energy.

3.
Sci Total Environ ; 937: 173381, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782274

ABSTRACT

The chemical weathering process of carbonate rocks consumes a large quantity of CO2. This has great potential as a carbon sink, and it is one of a significant pathway for achieving carbon neutrality. However, the control mechanisms of karst carbon sink fluxes are unclear, and there is a lack of effective and accurate accounting. We took the Puding Shawan karst water­carbon cycle test site in China, which has identical initial conditions but different land use types, as the research subject. We used controlled experiments over six years to evaluate the mechanisms for the differences in hydrology, water chemistry, concentrations and fluxes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC). We found that the transition from rock to bare soil to grassland led to increases in the DIC concentration by 0.08-0.62 mmol⋅L-1. The inorganic carbon sink flux (CSF) increased by 3.01-5.26 t⋅C⋅km-2⋅a-1, an increase amplitude of 30-70 %. The flux of dissolved organic carbon (FDOC) increase by 0.28 to 0.52 t⋅C⋅km-2⋅a-1, an increase amplitude of 34-90 %. We also assessed the contribution of land use modifications to regional carbon neutrality, it indicate that positive land use modification can significantly regulate the karst carbon sink, with grassland having the greatest carbon sequestration ability. Moreover, in addition to DOC from soil organic matter degradation, DOC production by chemoautotrophic microorganisms utilizing DIC in groundwater may also be a potential source. Thus, coupled studies of the conversion of DIC to DOC processes in groundwater are an important step in assessing karst carbon sink fluxes.

4.
Sci Total Environ ; 937: 173486, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38796009

ABSTRACT

As an important component of inland water, the primary factors affecting the carbon cycle in karst river-lake systems require further investigation. In particular, the impacts of climatic factors and the biological carbon pump (BCP) on carbon dioxide (CO2) exchange fluxes in karst rivers and lakes deserve considerable attention. Using quarterly sampling, field monitoring, and meteorological data collection, the spatiotemporal characteristics of CO2 exchange fluxes in Erhai Lake (a typical karst lake in Yunnan, SW China) and its inflow rivers were investigated and the primary influencing factors were analyzed. The average river CO2 exchange flux reached 346.80 mg m-2 h-1, compared to -6.93 mg m-2 h-1 for the lake. The carbon cycle in rivers was strongly influenced by land use within the basin; cultivated and construction land were the main contributors to organic carbon (OC) in the river (r = 0.66, p < 0.01) and the mineralization of OC was a major factor in CO2 oversaturation in most rivers (r = 0.76, p < 0.01). In addition, the BCP effect of aquatic plants and the high pH in karst river-lake systems enhance the ability of water body to absorb CO2, resulting in undersaturated CO2 levels in the lake. Notably, under rainfall regulation, riverine OC and dissolved inorganic carbon (DIC) flux inputs controlled the level of CO2 exchange fluxes in the lake (rOC = 0.78, p < 0.05; rDIC = 0.97, p < 0.01). We speculate that under future climate and human activity scenarios, the DIC and OC input from rivers may alleviate the CO2 limitation of BCP effects in karst eutrophication lakes, possibly enabling aquatic plants to convert more CO2 into OC for burial. The results of this research can help advance our understanding of CO2 emissions and absorption mechanisms in karst river-lake systems.

5.
Sci Rep ; 14(1): 12083, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802453

ABSTRACT

In this paper, Voronoi cell finite element method (VCFEM) based on assumed flux hybrid formulation has been presented for heat conduction problem of particle reinforced composites material. The heat fluxes satisfying a priori internal thermal balance are directly approximated independently in the matrix and the inclusion respectively. The temperatures on element boundary and matrix-inclusion interface are interpolated by nodal temperature. The thermal balance on the interelement boundary and matrix-inclusion interface is relaxed and introduced into the functional by taking the temperature as Lagrange multiplier. In this way, a functional containing two variables of heat flux and temperature is proposed. Full field heat flux and effective thermal conductivity are obtained. Feasibility and effectiveness of the proposed approach are verified through several numerical examples.

6.
J Chromatogr A ; 1727: 464989, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38763085

ABSTRACT

Ultrahigh-performance liquid chromatography coupled with high-field quadrupole Orbitrap high resolution mass spectrometry was used for the separation and determination of 20 antihistamines, and a dispersive micro solid-phase extraction procedure using high-performance absorbing material was developed as a sample preparation strategy for extracting 20 antihistamines from milk. Instrument conditions and key parameters influencing extraction efficiency were investigated to obtain an optimized method. The limit of detection for 20 antihistamines in milk using this method is 0.05 µg/L to 1.0 µg/L. Recoveries are between 80.7 % and 108.3 %, and the relative standard deviation is less than 15 %. It is suitable for confirmatory monitoring and quantitative analysis of 20 antihistamines in milk. The results show that antihistamines in milk may be noteworthy issues for human health and environmental pollution.


Subject(s)
Histamine Antagonists , Limit of Detection , Milk , Chromatography, High Pressure Liquid/methods , Milk/chemistry , Animals , Histamine Antagonists/analysis , Histamine Antagonists/isolation & purification , Solid Phase Microextraction/methods , Mass Spectrometry/methods , Cattle , Reproducibility of Results
7.
J Am Chem Soc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606686

ABSTRACT

Ion selectivity is the basis for designing smart nanopore/channel-based devices, e.g., ion separators and biosensors. Quantitative characterization of ion selectivities in nanopores often employs the Nernst or Goldman-Hodgkin-Katz (GHK) equation to interpret transmembrane potentials. However, the direction of the measured transmembrane potential drop is not specified in these equations, and selectivity values calculated using absolute values of transmembrane potentials do not directly reveal the ion for which the membrane is selective. Moreover, researchers arbitrarily choose whether to use the Nernst or GHK equation and overlook the significant differences between them, leading to ineffective quantitative comparisons between studies. This work addresses these challenges through (a) specifying the transmembrane potential (sign) and salt concentrations in terms of working and reference electrodes and the solutions in which they reside when using the Nernst and GHK equations, (b) reporting of both Nernst-selectivity and GHK-selectivity along with solution compositions and transmembrane potentials when comparing different nanopores/channels, and (c) performing simulations to define an ideal selectivity for nanochannels. Experimental and modeling studies provide significant insight into these fundamental equations and guidelines for the development of nanopore/channel-based devices.

8.
Adv Mater ; : e2401772, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38634168

ABSTRACT

High-performance covalent organic framework (COF) fibers are demanded for an efficient capturing of blue osmotic power because of their excellent durability, simple integration, and large scalability. However, the scalable production of COF fibers is still very challenging due to the poor solubility and fragile structure of COFs. Herein, for the first time, it is reported that COF dispersions can be continuously processed into macroscopic, meter-long, and pure COF fibers using a wet spinning approach. The two presented COF fibers can be directly used for capturing of osmotic energy, avoiding the production of composite materials that require other additives and face challenges such as phase separation and environmental issues induced by the additives. A COF fiber exhibits power densities of 70.2 and 185.3 W m-2 at 50-fold and 500-fold salt gradients, respectively. These values outperform those of most reported systems, which indicate the high potential of COF fibers for capturing of blue osmotic energy.

9.
Front Neurol ; 15: 1367974, 2024.
Article in English | MEDLINE | ID: mdl-38638307

ABSTRACT

Corona Virus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has presented unprecedented challenges to the world. Changes after acute COVID-19 have had a significant impact on patients with neurodegenerative diseases. This study aims to explore the mechanism of neurodegenerative diseases by examining the main pathways of central nervous system infection of SARS-CoV-2. Research has indicated that chronic inflammation and abnormal immune response are the primary factors leading to neuronal damage and long-term consequences of COVID-19. In some COVID-19 patients, the concurrent inflammatory response leads to increased release of pro-inflammatory cytokines, which may significantly impact the prognosis. Molecular imaging can accurately assess the severity of neurodegenerative diseases in patients with COVID-19 after the acute phase. Furthermore, the use of FDG-PET is advocated to quantify the relationship between neuroinflammation and psychiatric and cognitive symptoms in patients who have recovered from COVID-19. Future development should focus on aggressive post-infection control of inflammation and the development of targeted therapies that target ACE2 receptors, ERK1/2, and Ca2+.

10.
Biosens Bioelectron ; 256: 116262, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38621340

ABSTRACT

Lateral flow immunoassays (LFIAs) are an essential and widely used point-of-care test for medical diagnoses. However, commercial LFIAs still have low sensitivity and specificity. Therefore, we developed an automatic ultrasensitive dual-color enhanced LFIA (DCE-LFIA) by applying an enzyme-induced tyramide signal amplification method to a double-antibody sandwich LFIA for antigen detection. The DCE-LFIA first specifically captured horseradish peroxidase (HRP)-labeled colored microspheres at the Test line, and then deposited a large amount of tyramide-modified signals under the catalytic action of HRP to achieve the color superposition. A limit of detection (LOD) of 3.9 pg/mL and a naked-eye cut-off limit of 7.8 pg/mL were achieved for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein. Additionally, in the inactivated virus detections, LOD equivalent to chemiluminescence (0.018 TCID50/mL) was obtained, and it had excellent specificity under the interference of other respiratory viruses. High sensitivity has also been achieved for detection of influenza A, influenza B, cardiac troponin I, and human chorionic gonadotrophin using this DCE-LFIA, suggesting the assay is universally applicable. To ensure the convenience and stability in practical applications, we created an automatic device. It provides a new practical option for point-of-care test immunoassays, especially ultra trace detection and at-home testing.


Subject(s)
Biosensing Techniques , COVID-19 , Limit of Detection , SARS-CoV-2 , Immunoassay/instrumentation , Immunoassay/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Horseradish Peroxidase/chemistry , Troponin I/blood , Troponin I/analysis , Point-of-Care Testing , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Chorionic Gonadotropin/analysis , Chorionic Gonadotropin/blood , Influenza A virus/isolation & purification , Influenza A virus/immunology , Phosphoproteins
11.
Adv Sci (Weinh) ; : e2309824, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561966

ABSTRACT

Precise agriculture based on intelligent agriculture plays a significant role in sustainable development. The agricultural Internet of Things (IoTs) is a crucial foundation for intelligent agriculture. However, the development of agricultural IoTs has led to exponential growth in various sensors, posing a major challenge in achieving long-term stable power supply for these distributed sensors. Introducing a self-powered active biochemical sensor can help, but current sensors have poor sensitivity and specificity making this application challenging. To overcome this limitation, a triboelectric nanogenerator (TENG)-based self-powered active urea sensor which demonstrates high sensitivity and specificity is developed. This device achieves signal enhancement by introducing a volume effect to enhance the utilization of charges through a novel dual-electrode structure, and improves the specificity of urea detection by utilizing an enzyme-catalyzed reaction. The device is successfully used to monitor the variation of urea concentration during crop growth with concentrations as low as 4 µm, without being significantly affected by common fertilizers such as potassium chloride or ammonium dihydrogen phosphate. This is the first self-powered active biochemical sensor capable of highly specific and highly sensitive fertilizer detection, pointing toward a new direction for developing self-powered active biochemical sensor systems within sustainable development-oriented agricultural IoTs.

12.
Mol Ther ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659223

ABSTRACT

Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.

13.
Anal Chem ; 96(15): 5960-5967, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38581372

ABSTRACT

Nonobstructive azoospermia (NOA) is an important cause of infertility, and intracytoplasmic sperm injection (ICSI) is the mainstay of treatment for these patients. In cases where a sufficient number of sperm (usually 1-2) is not available, the selection of oocytes for ICSI is a difficult problem that must be solved. Here, we constructed a dual-activated oxidative stress-responsive AIE probe, b-PyTPA. The strong donor-acceptor configuration of b-PyTPA leads to twisted intramolecular charge transfer (TICT) effect that quenches the fluorescence of the probe, however, H2O2 would specifically remove the boronatebenzyl unit and release a much weaker acceptor, which inhibits TICT and restores the fluorescence. In addition, the presence of a pyridine salt makes b-PyTPA more hydrophilic, whereas removal of the pyridine salt increases the hydrophobicity of PyTPA, which triggers aggregation and further enhances fluorescence. Thus, the higher the intracellular level of oxidative stress, the stronger the fluorescence. In vitro, this dual-activated fluorescent probe is capable of accurately detecting senescent cells (high oxidative stress). More importantly, b-PyTPA was able to characterize senescent oocytes, as assessed by the level of oxidative stress. It is also possible to identify high quality oocytes from those obtained for subsequent ICSI. In conclusion, this dual-activated oxidative stress-assessment probe enables the quality assessment of oocytes and has potential application in ICSI.


Subject(s)
Infertility, Male , Humans , Male , Infertility, Male/etiology , Infertility, Male/therapy , Hydrogen Peroxide , Semen , Spermatozoa , Oocytes , Pyridines/pharmacology
14.
Comput Biol Med ; 174: 108418, 2024 May.
Article in English | MEDLINE | ID: mdl-38593641

ABSTRACT

Domain adaptation (DA) is commonly employed in diabetic retinopathy (DR) grading using unannotated fundus images, allowing knowledge transfer from labeled color fundus images. Existing DAs often struggle with domain disparities, hindering DR grading performance compared to clinical diagnosis. A source-free active domain adaptation method (SFADA), which generates features of color fundus images by noise, selects valuable ultra-wide-field (UWF) fundus images through local representation matching, and adapts models using DR lesion prototypes, is proposed to upgrade DR diagnostic accuracy. Importantly, SFADA enhances data security and patient privacy by excluding source domain data. It reduces image resolution and boosts model training speed by modeling DR grade relationships directly. Experiments show SFADA significantly improves DR grading performance, increasing accuracy by 20.90% and quadratic weighted kappa by 18.63% over baseline, reaching 85.36% and 92.38%, respectively. This suggests SFADA's promise for real clinical applications.


Subject(s)
Diabetic Retinopathy , Fundus Oculi , Humans , Diabetic Retinopathy/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Algorithms
15.
Anal Chem ; 96(18): 7163-7171, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38664895

ABSTRACT

Biological nanopores feature functional elements on the outer surfaces (FEOS) and inner walls (FEIW), enabling precise control over ions and molecules with exceptional sensitivity and specificity. This provides valuable inspiration to scientists for the development of intelligent artificial nanochannel-based platforms, with a wide range of potential applications, including biosensors. Much effort has been dedicated to investigating the distinct contribution of FEOS and FEIW of multichannel membrane biosensors. However, the intricate interactions among neighboring pores in multichannel biosensors have presented challenges. This underscores the untapped potential of single nanochannels as ideal candidates in this field. Here, we employed single nanochannel membranes with different pore sizes to investigate the distinct contributions of FEIW and FEOS to single-nanochannel biosensors, combined with numerical simulations. Our findings revealed that alterations in the negative charges of FEIW and FEOS, induced by target binding, have differential effects on ion transport, contingent upon the degree of nanoconfinement. In the case of smaller pores, such as 20 nm, the ion concentration polarization driven by FEIW can independently control ion transport through the surface's electric double layer. However, as the pore size increases to 40-60 nm, both FEIW and FEOS become essential for effective ion concentration polarization. When the pore size reaches 100 nm, both FEIW and FEOS are ineffective and thus unsuitable for biosensors. Simulations demonstrate that the observed phenomena can be attributed to the interactions between the charges of FEIW and FEOS within the overlapping electric double layer under confinement. These results underscore the critical role of pore size as a key parameter in governing the functionality of probes within or on nanopore-based biosensors as well as in the design of nanopore-based devices.


Subject(s)
Biosensing Techniques , Nanopores , Surface Properties , Particle Size , Porosity
16.
Biology (Basel) ; 13(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38666855

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.

17.
Int Immunopharmacol ; 131: 111869, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38492343

ABSTRACT

BACKGROUND AND PURPOSE: It has been reported activation of NLRP3 inflammasome after intracerebral hemorrhage (ICH) ictus exacerbates neuroinflammation and brain injury. We hypothesized that inhibition of NLRP3 by OLT1177 (dapansutrile), a novel NLRP3 inflammasome inhibitor, could reduce brain edema and attenuate brain injury in experimental ICH. METHODS: ICH was induced by injection of autologous blood into basal ganglia in mice models. Sixty-three C57Bl/6 male mice were randomly grouped into the sham, vehicle, OLT1177 (Dapansutrile, 200 mg/kg intraperitoneally) and treated for consecutive three days, starting from 1 h after ICH surgery. Behavioral test, brain edema, brain water content, blood-brain barrier integrity and vascular permeability, cell apoptosis, and NLRP3 and its downstream protein levels were measured. RESULTS: OLT1177 significantly reduced cerebral edema after ICH and contributed to the attenuation of neurological deficits. OLT1177 could preserve blood-brain barrier integrity and lessen vascular leakage. In addition, OLT1177 preserved microglia morphological shift and significantly inhibited the activation of caspase-1 and release of IL-1ß. We also found that OLT1177 can protect against neuronal loss in the affected hemisphere. CONCLUSIONS: OLT1177 (dapansutrile) could significantly attenuate the brain edema after ICH and effectively alleviate the neurological deficit. This result suggests that the novel NLRP3 inhibitor, OLT1177, might serve as a promising candidate for the treatment of ICH.


Subject(s)
Brain Edema , Brain Injuries , Nitriles , Sulfones , Mice , Male , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Brain Edema/drug therapy , Brain Edema/metabolism , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Brain Injuries/metabolism
18.
Angew Chem Int Ed Engl ; 63(17): e202400766, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38438308

ABSTRACT

Realizing protein analysis in organelles of living cells is of great significance for developing diagnostic and therapeutic methods of diseases. Fluorescent-labeled antibodies with well imaging performance and high affinity are classical biochemical tools for protein analysis, while due to the inability to effectively enter into cells, not to mention organelles and the uncontrollable reaction sites that might cause antibodies inactivation when chemically modification, they are hard to apply to living cells. Inspired by the structure of fluorescent-labeled antibodies, we designed as a universal detection platform that was based on the peptide-conjugated probes (PCPs) and consisted of three parts: a) a rotor type fluorescent molecular scaffold for conjugation and signal output; b) the cell penetration protein recognition unit; c) the subcellular organelle targeting unit. In living cells, PCPs could firstly localize at organelles and then proceed protein specific recognition, thus jointly leading to the restriction of twisted intramolecular charge transfer and activation of fluorescence signal. As a proof-of-concept, six different proteins in three typical intracellular organelles could be detected by our platform through simply replacing the recognition sequence of proteins and matching organelle targeting units. The position and intensity of fluorescence signals demonstrated specificity of PCPs and universality of the platform.


Subject(s)
Fluorescent Dyes , Organelles , Fluorescent Dyes/chemistry , Organelles/chemistry , Peptides/metabolism , Fluorescence
19.
Diabetes Metab Syndr ; 18(3): 102975, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38492549

ABSTRACT

OBJECTIVE: To investigate the relationship of moderate physical activity (MPA), vigorous physical activity (VPA), and muscle strengthening activity (MSA), independently and jointly, with all-cause, cardiovascular disease (CVD), and non-CVD mortality in individuals with type 2 diabetes (T2D). MATERIAL AND METHODS: This cohort study included 47,538 adults with T2D and 561,963 adults without T2D from the National Health Interview Survey 1997-2018 who provided data on self-reported physical activity (PA). Mortality data were obtained from the National Death Index through 2019. Cox regression was used to estimate hazard ratio (HR) and 95% confidence interval (CI). RESULTS: In analyses mutually adjusted, versus no MPA adults with T2D, performing the recommendations of MPA (150-299 min/week) associated with lower all-cause mortality (HR, 0.72; 95% CI, 0.66-0.78), CVD mortality (HR, 0.68; 95% CI, 0.58-0.79), and non-CVD mortality (HR, 0.72; 95% CI, 0.65-0.79). Similar benefits were observed in those meeting recommendations for VPA and MSA. Higher levels of PA beyond current recommendations may provide a few additional benefits without adverse effects on mortality risk, regardless of diabetes onset age, duration of diabetes, and medication status. The joint analysis indicates that combining MSA with aerobic PA could further lower mortality risk, and lowest all-cause mortality was observed among individuals engaging in either 75-150 min/week of VPA and 1 time/week of MSA (HR, 0.30; 95% CI, 0.13-0.70) or 150-299 min/week of MPA and 1 time/week of MSA (HR, 0.33; 95% CI, 0.20-0.55). CONCLUSION: Our study supports the current PA guidelines and suggests that there may be limited benefits gained from exercising beyond recommended levels in adults with T2D, combining recommended levels of aerobic and resistance exercises could yield the greatest benefits.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Exercise , Humans , Diabetes Mellitus, Type 2/mortality , Male , Cardiovascular Diseases/mortality , Cardiovascular Diseases/etiology , Female , Middle Aged , Prospective Studies , Adult , Follow-Up Studies , Prognosis , United States/epidemiology , Aged , Muscle Strength/physiology , Resistance Training , Survival Rate , Cause of Death
20.
Radiother Oncol ; 194: 110213, 2024 May.
Article in English | MEDLINE | ID: mdl-38458258

ABSTRACT

BACKGROUND AND PURPOSE: Poor penetration of transferred T cells represents a critical factor impeding the development of adoptive cell therapy in solid tumors. We demonstrated that iRGD-antiCD3 modification promoted both T cell infiltration and activation in our previous work. Interest in low-dose radiotherapy has recently been renewed due to its immuno-stimulatory effects including T cell recruitment. This study aims to explore the synergistic effects between low-dose radiotherapy and iRGD-antiCD3-modified T cells. MATERIALS AND METHODS: Flow cytometry was performed to assess the expression of iRGD receptors and chemokines. T cell infiltration was evaluated by immunohistofluorescence and in vivo real-time fluorescence imaging and antitumor effects were investigated by in vivo bioluminescence imaging in the gastric cancer peritoneal metastasis mouse model. RESULTS: We found that 2 Gy irradiation upregulated the expression of all three iRGD receptors and T-cell chemokines. The addition of 2 Gy low-dose irradiation boosted the accumulation and penetration of iRGD-antiCD3-modified T cells in peritoneal tumor nodules. Combining 2 Gy low-dose irradiation with iRGD-antiCD3-modified T cells significantly inhibited tumor growth and prolonged survival in the peritoneal metastasis mouse model with a favorable safety profile. CONCLUSION: Altogether, we demonstrated that low-dose radiotherapy could improve the antitumor potency of iRGD-antiCD3-modified T cells by promoting T cell infiltration, providing a rationale for exploring low-dose radiotherapy in combination of other adoptive T cell therapies in solid tumors.


Subject(s)
Stomach Neoplasms , T-Lymphocytes , Animals , Mice , Stomach Neoplasms/radiotherapy , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , T-Lymphocytes/radiation effects , T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Radiotherapy Dosage , Oligopeptides , Peritoneal Neoplasms/radiotherapy , Peritoneal Neoplasms/secondary , Cell Line, Tumor , Female , Combined Modality Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...