Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Sleep Breath ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772968

ABSTRACT

PURPOSE: Major Depressive Disorder (MDD) and Insomnia Disorder (ID) are prevalent psychiatric conditions often occurring concurrently, leading to substantial impairment in daily functioning. Understanding the neurobiological underpinnings of these disorders and their comorbidity is crucial for developing effective interventions. This study aims to analyze changes in functional connectivity within attention networks and default mode networks in patients with depression and insomnia. METHODS: The functional connectivity alterations in individuals with MDD, ID, comorbid MDD and insomnia (iMDD), and healthy controls (HC) were assessed from a cohort of 174 participants. They underwent rs-fMRI scans, demographic assessments, and scale evaluations for depression and sleep quality. Functional connectivity analysis was conducted using region-of-interest (ROI) and whole-brain methods. RESULTS: The MDD and iMDD groups exhibited higher Hamilton Depression Scale (HAMD) scores compared to HC and ID groups (P < 0.001). Both ID and MDD groups displayed enhanced connectivity between the left and right orbital frontal cortex compared to HC (P < 0.05), while the iMDD group showed reduced connectivity compared to HC and ID groups (P < 0.05). In the left insula, reduced connectivity with the right medial superior frontal gyrus was observed across patient groups compared to HC (P < 0.05), with the iMDD group showing increased connectivity compared to MDD (P < 0.05). Moreover, alterations in functional connectivity between the left thalamus and left temporal pole were found in iMDD compared to HC and MDD (P < 0.05). Correlation analyses revealed associations between abnormal connectivity and symptom severity in MDD and ID groups. CONCLUSIONS: Our findings demonstrate distinct patterns of altered functional connectivity in individuals with MDD, ID, and iMDD compared to healthy controls. These findings contribute to a better understanding of the pathophysiology of depression and insomnia, which could be used as a reference for the diagnosis and treatments of these patients.

2.
J Orthop Translat ; 46: 79-90, 2024 May.
Article in English | MEDLINE | ID: mdl-38817242

ABSTRACT

Background: The cartilage stem/progenitor cells (CSPC) play a critical role in maintaining cartilage homeostasis. However, the effects of phenotypic fluctuations of CSPC on cartilage degeneration and the role of CSPC in the pathogenesis of OA is largely unknown. Methods: The cartilage samples of 3 non-OA and 10 OA patients were collected. Human CSPC (hCSPC) derived from these patients were isolated, identified, and evaluated for cellular functions. Additionally, chondrocytes derived from OA patients were isolated. The effect of Yes-associated protein (YAP) expression on hCSPC was investigated in vitro. The OA rat model was established by Hulth's method. Lentivirus-mediated YAP (Lv-YAP) or lentivirus-mediated YAP RNAi (Lv-YAP-RNAi) was injected intra-articularly to modulate YAP expression in rat joints. In addition, allogeneic rat CSPC (rCSPC) overexpressing or silencing YAP were transplanted by intra-articularly injection. We also evaluated the functions of rCSPC and the OA-related cartilage phenotype in the rat model. Finally, the transcriptome of OA rCSPC overexpressing YAP was examined to explore the potential downstream targets of YAP in rCSPC. Results: hCSPC derived from OA patients exhibited differential chondrogenesis capacity. Among them, a subset of hCSPC showed pronounced dysfunction, including impaired chondrogenic differentiation, inhibition of proliferation and migration, and downregulation of lubricin. Additionally, YAP was lowly expressed in quiescent non-OA hCSPC, upregulated in activated OA hCSPC, but significantly downregulated in dysfunctional OA hCSPC. Notably, the overexpression of YAP in OA hCSPC improved the proliferation, lubricin production, cell migration, and senescence, while silencing YAP had the opposite effect. In vivo, upregulation of YAP in the joint delayed OA progression and improved the cartilage regeneration capacity of rCSPC. Using transcriptomic analysis, we found that YAP may regulate rCSPC function by upregulating Baculoviral IAP repeat-containing 2 (BIRC2). Importantly, the knockdown of BIRC2 partly blocked the regulation of YAP on the CSPC function. Conclusion: Dysfunction of CSPC compromises the intrinsic repair capacity of cartilage and impairs cartilage homeostasis in OA. Notably, the transcriptional co-activator YAP plays a critical role in maintaining CSPC function through potential target gene BIRC2. The Translational Potential of this Article: In this study, we observed targeting the YAP-BIRC2 axis improved the CSPC function and restored the cartilage homeostasis in OA. This study provides a potential stem cell-modifying OA therapy.

3.
Org Lett ; 26(18): 3703-3708, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38668695

ABSTRACT

An iron-catalyzed photochemical sulfinamidation of hydrocarbons with N-sulfinylamines has been developed. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with hydrogen atom transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons, and the resultant alkyl radicals were readily trapped by N-sulfinylamines to produce structurally diverse sulfinamides. Contrary to traditional methods that inevitably use sensitive organometallic reagents and prefunctionalized substrates, our approach features simple operation and the wide availability of starting materials. Gratifyingly, the reaction is scalable, and the obtained sulfinamides can be conveniently converted to highly functionalized sulfur(VI) derivatives.

4.
J Am Chem Soc ; 146(18): 12538-12546, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38656110

ABSTRACT

There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.

5.
Angew Chem Int Ed Engl ; : e202406535, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652809

ABSTRACT

Borophenes have sparked considerable interest owing to their fascinating physical characteristics and diverse polymorphism. However, borophene nanoribbons (BNRs) with widths less than 2 nm have not been achieved. Herein, we report the experimental realization of supernarrow BNRs. Combining scanning tunneling microscopy imaging with density functional theory modeling and ab initio molecular dynamics simulations, we demonstrate that, under the applied growth conditions, boron atoms can penetrate the outermost layer of Au(111) and form BNRs composed of a pair of zigzag (2,2) boron rows. The BNRs have a width self-contained to ∼1 nm and dipoles at the edges to keep them separated. They are embedded in the outermost Au layer and shielded on top by the evacuated Au atoms, free of the need for post-passivation. Scanning tunneling spectroscopy reveals distinct edge states, primarily attributed to the localized spin at the BNRs' zigzag edges. This work adds a new member to the boron material family and introduces a new physical feature to borophenes.

6.
Behav Brain Res ; 466: 114974, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38554850

ABSTRACT

Polygala tenuifolia Wild is an ancient traditional Chinese medicine. Its main component, tenuifolin (TEN), has been proven to improve cognitive impairment caused by neurodegenerative diseases and ovariectomy. However, there was hardly any pharmacological research about TEN and its potential gender differences. Considering the reduction of TEN on learning and memory dysfunction in ovariectomized animals, therefore, we focused on the impact of TEN in different mice genders in the current study. Spontaneous alternation behavior (SAB), light-dark discrimination, and Morris water maze (MWM) tests were used to evaluate the mice's learning and memory abilities. The field excitatory postsynaptic potential (fEPSP) of the hippocampal CA1 region was recorded using an electrophysiological method, and the morphology of the dendritic structure was examined using Golgi staining. In the behavioral experiments, TEN improved the correct rate in female mice in the SAB test, the correct rate in the light-dark discrimination test, and the number of crossing platforms in the MWM test. Additionally, TEN reduced the latency of female mice rather than male mice in light-dark discrimination and MWM tests. Moreover, TEN could significantly increase the slope of fEPSP in hippocampal Schaffer-CA1 and enhance the total length and the number of intersections of dendrites in the hippocampal CA1 area in female mice but not in male mice. Collectively, the results of the current study showed that TEN improved learning and memory by regulating long-term potentiation (LTP) and dendritic structure of hippocampal CA1 area in female mice but not in males. These findings would help to explore the improvement mechanism of TEN on cognition and expand the knowledge of the potential therapeutic value of TEN in the treatment of cognitive impairment.


Subject(s)
CA1 Region, Hippocampal , Dendrites , Diterpenes, Kaurane , Long-Term Potentiation , Animals , Female , Male , CA1 Region, Hippocampal/drug effects , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Mice , Dendrites/drug effects , Memory/drug effects , Sex Factors , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Maze Learning/drug effects , Maze Learning/physiology
7.
Adv Mater ; : e2314252, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551140

ABSTRACT

The activity-stability trade-off relationship of oxygen reduction reaction (ORR) is a tricky issue that strikes the electrocatalyst population and hinders the widespread application of fuel cells. Here neoteric biphase Pd nanosheets that are structured with ultrathin two-dimensional crystalline Pd inner cores and ≈1 nm thin atomic-hybrid RhOx/Pd amorphous skins, named c/a-Pd@PdRh NSs, for disentangling this trade-off dilemma for alkaline ORR are developed. The superthin amorphous skins significantly amplify the quantity of flexibly low-coordinated atoms for electrocatalysis. An in situ selected oxidation of the top-surface Rh dopants creates atomically hybrid RhOx/Pd disorder surfaces. Detailed energy spectra and theoretical simulation confirm that these RhOx/Pd interfaces can arouse a surface charge redistribution, causing significant electron deficiency and lowered d-band center for surface Pd. Meanwhile, anticorrosive Rh/RhOx species can thermodynamically passivate the neighboring Pd atoms from oxidative dissolution. Thanks to these amplified interfacial effects, the biphase c/a-Pd@PdRh NSs simultaneously exhibit a superhigh ORR activity (5.92 A mg-1, 22.8 times that of Pt/C) and an outstanding long-lasting stability after 100k cycles of accelerated durability test, showcasing unprecedented electrocatalysts for breaking the activity-stability trade-off relationship of ORR. This work paves a bran-new strategy for designing high-performance electrocatalysts through creating modulated amorphous skins on low-dimensional nanomaterials.

8.
J Am Chem Soc ; 146(6): 3854-3860, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305733

ABSTRACT

The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm-2 at -40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g-1 at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.

9.
ACS Omega ; 9(7): 7937-7957, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405476

ABSTRACT

In the context of global climate change, significant attention is being directed toward renewable energy and the pivotal role of carbon capture and storage (CCS) technologies. These innovations involve secure CO2 storage in deep saline aquifers through structural and capillary processes, with the interfacial tension (IFT) of the CO2-brine system influencing the storage capacity of formations. In this study, an extensive data set of 2811 experimental data points was compiled to model the IFT of impure and pure CO2-brine systems. Three white-box machine learning (ML) methods, namely, genetic programming (GP), gene expression programming (GEP), and group method of data handling (GMDH) were employed to establish accurate mathematical correlations. Notably, the study utilized two distinct modeling approaches: one focused on impurity compositions and the other incorporating a pseudocritical temperature variable (Tcm) offering a versatile predictive tool suitable for various gas mixtures. Among the correlation methods explored, GMDH, employing five inputs, exhibited exceptional accuracy and reliability across all metrics. Its mean absolute percentage error (MAPE) values for testing, training, and complete data sets stood at 7.63, 7.31, and 7.38%, respectively. In the case of six-input models, the GEP correlation displayed the highest precision, with MAPE values of 9.30, 8.06, and 8.31% for the testing, training, and total data sets, respectively. The sensitivity and trend analyses revealed that pressure exerted the most significant impact on the IFT of CO2-brine, showcasing an adverse effect. Moreover, an impurity possessing a critical temperature below that of CO2 resulted in an elevated IFT. Consequently, this relationship leads to higher impurity concentrations aligning with lower Tcm values and subsequently elevated IFT. Also, monovalent and divalent cation molalities exhibited a growing influence on the IFT, with divalent cations exerting approximately double the influence of monovalent cations. Finally, the Leverage approach confirmed both the reliability of the experimental data and the robust statistical validity of the best correlations established in this study.

10.
Plant Biotechnol J ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412139

ABSTRACT

Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.

11.
Anal Chem ; 96(10): 4275-4281, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38409670

ABSTRACT

Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.

12.
J Colloid Interface Sci ; 659: 21-30, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38157723

ABSTRACT

Lithium metal is an attractive and promising anode material due to its high energy density and low working potential. However, the uncontrolled growth of lithium dendrites during repeated plating and stripping processes hinders the practical application of lithium metal batteries, leading to low Coulombic efficiency, poor lifespan, and safety concerns. In this study, we synthesized highly lithiophilic and conductive Ag nanoparticles decorated on SiO2 nanospheres to construct an optimized lithium host for promoting uniform Li deposition. The Ag nanoparticles not only act as lithiophilic sites but also provide high electrical conductivity to the Ag@SiO2@Ag anode. Additionally, the SiO2 layer serves as a lithiophilic nucleation agent, ensuring homogeneous lithium deposition and suppressing the growth of lithium dendrites. Theoretical calculations further confirm that the combination of Ag nanoparticles and SiO2 effectively enhances the adsorption ability of Ag@SiO2@Ag with Li+ ions compared to pure Ag and SiO2 materials. As a result, the Ag@SiO2@Ag coating, with its balanced lithiophilicity and conductivity, demonstrates excellent electrochemical performance, including high Coulombic efficiency, low polarization voltage, and long cycle life. In a full lithium metal cell with LiFePO4 cathode, the Ag@SiO2@Ag anode exhibits a high capacity of 133.1 and 121.4 mAh/g after 200 cycles at rates of 0.5 and 1C, respectively. These results highlight the synergistic coupling of lithiophilicity and conductivity in the Ag@SiO2@Ag coating, providing valuable insights into the field of lithiophilic chemistry and its potential for achieving high-performance batteries in the next generation.

13.
Am J Cancer Res ; 13(11): 5065-5081, 2023.
Article in English | MEDLINE | ID: mdl-38058820

ABSTRACT

There is no strong evidence indicating the optimal treatment for breast cancer (BC) and no specific prognostic model. The aim of this study was to establish nomograms to predict the overall survival (OS) of BC patients receiving chemoradiotherapy and surgery, thereby quantifying survival benefits and improving patient management. A total of 1877 patients with primary nonmetastatic BC who received chemoradiotherapy and surgery from 2010 to 2019 were identified from the Surveillance, Epidemiology and End Results (SEER) database as the training cohort, 804 as the internal validation cohort, and 796 patients from the First Affiliated Hospital of Zhengzhou University (n=324) and Jiaxing Maternal and Child Health Hospital (n=472) as the external validation cohort. Least absolute shrinkage and selection operator (LASSO), univariate, and multivariate Cox regression analyses were performed in the training cohort to determine independent prognostic factors for BC, and a nomogram was constructed to predict 3-year, 5-year, and 8-year OS. The final model incorporated 7 factors that significantly affect OS: race, location, positive regional nodes, T stage, N stage, subtype, and grade. The calibration curves showed good consistency between the predicted survival and actual outcomes. Time-dependent receiver operating characteristic (ROC) curves and the time-dependent area under the curve (AUC) confirmed that the accuracy and clinical usefulness of the constructed nomograms were favorable. Decision curve analysis (DCA) and net reclassification improvement (NRI) also demonstrated that this nomogram was more suitable for clinical use than the 7th American Joint Committee on Cancer (AJCC) tumor node metastasis (TNM) staging system and the previous prediction model. In the training cohort and the internal validation cohort, the concordance indices (C-index) of the nomogram for predicting OS (0.723 and 0.649, respectively) were greater than those of the 7th AJCC TNM staging system and the previous prediction model. In addition, based on Kaplan-Meier (K-M) survival curves, the survival differences among different risk stratifications were statistically significant, indicating that our risk model was accurate. In this study, we determined independent prognostic factors for OS in patients with primary nonmetastatic BC treated with chemoradiotherapy and surgery. A new and accurate nomogram for predicting 3-, 5-, and 8-year OS in this patient population was developed and validated for potential clinical applicability.

14.
Nanomicro Lett ; 16(1): 53, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108934

ABSTRACT

Interfacial water molecules are the most important participants in the hydrogen evolution reaction (HER). Hence, understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism. Unfortunately, investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment. Here, the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry, in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques. Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction. When comparing the different cation electrolyte systems at a given potential, the frequency of the interfacial water peak increases in the specified order: Li+ < Na+ < K+ < Ca2+ < Sr2+. The structure of interfacial water was optimized by adjusting the radius, valence, and concentration of cation to form the two-H down structure. This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance. Therefore, local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.

15.
Nano Lett ; 23(21): 9872-9879, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37856869

ABSTRACT

Lithium metal deposition is strongly affected by the intrinsic properties of the solid-electrolyte interphase (SEI) and working electrolyte, but a relevant understanding is far from complete. Here, by employing multiple electrochemical techniques and the design of SEI and electrolyte, we elucidate the electrochemistry of Li deposition under mass transport control. It is discovered that SEIs with a lower Li ion transference number and/or conductivity induce a distinctive current transition even under moderate potentiostatic polarization, which is associated with the control regime transition of Li ion transport from the SEI to the electrolyte. Furthermore, our findings help reveal the creation of a space-charge layer at the electrode/SEI interface due to the involvement of the diffusion process of Li ions through the SEI, which promotes the formation of dendrite embryos that develop and eventually trigger SEI breakage and the control regime transition of Li ion transport. Our insight into the very initial dendritic growth mechanism offers a bridge toward design and control for superior SEIs.

16.
Org Lett ; 25(28): 5279-5284, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37431881

ABSTRACT

The synthesis of tertiary phosphines(III) has been a long-standing challenge in synthetic chemistry because of inevitable issues including harsh conditions, sensitive organometallic reagents, and prefunctionalized substrates in traditional synthesis. Herein, we report a strategically novel C(sp3)-H bond phosphorylation that enables the assembly of structurally diverse tertiary phosphines(III) from industrial phosphine(III) sources under mild photocatalytic conditions. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with the hydrogen atom-transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons. Strikingly, this catalytic system can be successfully applied for the polymerization of electron-deficient alkenes.

17.
Analyst ; 148(17): 4044-4052, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37522852

ABSTRACT

Heavy metal ions, which are over-emitted from industrial production, pose a major threat to the ecological environment and human beings. Among the present detection technologies, achieving rapid and on-site detection of contaminants remains a challenge. Herein, capillaries with three-dimensional (3D) hot spot constructures are fabricated to achieve repaid and ultrasensitive mercury ion (Hg2+) detection in water based on surface-enhanced Raman scattering (SERS). The 4-mercapto pyridine (4-Mpy) serves as the Raman reporter with high selectivity, enabling the detection of Hg2+ by changes in adsorption configuration at the trace level. Under optimized conditions, the SERS response of 4-Mpy for Hg2+ exhibits good linearity, ranging from 1 pM to 0.1 µM in a few minutes, and the detection limit of 0.2 pM is much lower than the maximum Hg2+ concentration of 10 nM allowed in drinking water, as defined by the US Environmental Protection Agency (EPA). Simultaneously, combined with the theoretical simulation and experimental results, the above results indicate that the SERS substrates possess outstanding performances in specificity, recovery rate and stability, which may hold great potential for achieving rapid and on-site environmental pollutant detection using a portable Raman spectrometer.

18.
Molecules ; 28(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37446834

ABSTRACT

Euphorbia fischeriana has a long-standing history of use in traditional medicine for the treatment of tuberculosis diseases. However, the plant's therapeutic potential extends beyond this specific ailment. The present study aimed to investigate the antioxidant properties of Euphorbia fischeriana and lay the groundwork for further research on its potential therapeutic applications. Phytochemical tests were performed on the plant, and 11 types of phytochemicals were identified. Ultraviolet-visible spectrophotometry was used to evaluate the active components and antioxidant properties of eight different solvent extracts, ultimately selecting acetone extract for further research. UHPLC-ESI-Q-TOF-MS identified 43 compounds in the acetone extract, and chemical calculations were used to isolate those with high content and antioxidant activity. Three stability experiments confirmed the extract's stability, while cell viability and oral acute toxicity studies demonstrated its relatively low toxicity. In rats, the acetone extract showed significant protective effects against D-galactosamine-induced liver damage through histopathological examination and biochemical analysis. These results suggest that Euphorbia fischeriana's acetone extract has potential in treating diseases related to oxidative imbalances. Therefore, this study highlights the plant's potential therapeutic applications while providing insight into its antioxidant properties.


Subject(s)
Antioxidants , Euphorbia , Rats , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Euphorbia/chemistry , Acetone , Phytochemicals/pharmacology
19.
J Am Chem Soc ; 145(23): 12717-12725, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37268602

ABSTRACT

Enhancing the catalytic activity of Ru metal in the hydrogen oxidation reaction (HOR) potential range, improving the insufficient activity of Ru caused by its oxophilicity, is of great significance for reducing the cost of anion exchange membrane fuel cells (AEMFCs). Here, we use Ru grown on Au@Pd as a model system to understand the underlying mechanism for activity improvement by combining direct in situ surface-enhanced Raman spectroscopy (SERS) evidence of the catalytic reaction intermediate (OHad) with in situ X-ray diffraction (XRD), electrochemical characterization, as well as DFT calculations. The results showed that the Au@Pd@Ru nanocatalyst utilizes the hydrogen storage capacity of the Pd interlayer to "temporarily" store the activated hydrogen enriched at the interface, which spontaneously overflows at the "hydrogen-deficient interface" to react with OHad adsorbed on Ru. It is the essential reason for the enhanced catalytic activity of Ru at anodic potential. This work deepens our understanding of the HOR mechanism and provides new ideas for the rational design of advanced electrocatalysts.

20.
Biotechnol Biofuels Bioprod ; 16(1): 91, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37245019

ABSTRACT

BACKGROUND: With its high nutritional value and productivity, Italian ryegrass as a biomass feedstock constantly supplies rumen degradable nitrogen and digestible fiber to ruminants. However, biofuel production is easily reduced during ensiling due to the high-moisture content of Italian ryegrass, leading to economic losses. Lactic acid bacteria inoculants could improve lignocellulosic degradation and fermentation quality and decrease dry matter loss during the bioprocessing of silage. Therefore, this study analyzed the effects of Lactobacillus buchneri TSy1-3 (HE), Lactobacillus rhamnosus BDy3-10 (HO), and the combination of HE and HO (M) on fermentation quality, bacterial community and metabolome in high-moisture Italian ryegrass silage during ensiling. RESULTS: The results showed that the pH value was significantly lower in the HO groups than in the other treatments at the end of ensiling, and the dry matter and acetic acid contents were significantly higher in the HO group than in the other inoculated groups. All inoculants decreased the diversity of the bacterial community and significantly increased the relative abundance of Lactobacillus. Inoculation with HO significantly improved the concentrations of organic acids, dipeptides, ferulic acid, apigenin, and laricitrin. Compared with Lactobacillus buchneri TSy1-3 (HE), HO significantly upregulated the flavonoid compounds in the flavone and flavonol biosynthesis pathway. CONCLUSIONS: Overall, these findings suggest that inoculation with HO was beneficial for the development of Italian ryegrass as a biomass feedstock, improving fermentation quality, accelerating changes in bacterial community composition and increasing biofunctional metabolites in high-moisture Italian ryegrass silage.

SELECTION OF CITATIONS
SEARCH DETAIL
...