Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chin J Nat Med ; 21(2): 83-98, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36871985

ABSTRACT

Poria is an important medicine for inducing diuresis to drain dampness from the middle energizer. However, the specific effective components and the potential mechanism of Poria remain largely unknown. To identify the effective components and the mechanism of Poria water extract (PWE) to treat dampness stagnancy due to spleen deficiency syndrome (DSSD), a rat model of DSSD was established through weight-loaded forced swimming, intragastric ice-water stimulation, humid living environment, and alternate-day fasting for 21 days. After 14 days of treatment with PWE, the results indicated that PWE increased fecal moisture percentage, urine output, D-xylose level and weight; amylase, albumin, and total protein levels; and the swimming time of rats with DSSD to different extents. Eleven highly related components were screened out using the spectrum-effect relationship and LC-MS. Mechanistic studies revealed that PWE significantly increased the expression of serum motilin (MTL), gastrin (GAS), ADCY5/6, p-PKAα/ß/γ cat, and phosphorylated cAMP-response element binding protein in the stomach, and AQP3 expression in the colon. Moreover, it decreased the levels of serum ADH, the expression of AQP3 and AQP4 in the stomach, AQP1 and AQP3 in the duodenum, and AQP4 in the colon. PWE induced diuresis to drain dampness in rats with DSSD. Eleven main effective components were identified in PWE. They exerted therapeutic effect by regulating the AC-cAMP-AQP signaling pathway in the stomach, MTL and GAS levels in the serum, AQP1 and AQP3 expression in the duodenum, and AQP3 and AQP4 expression in the colon.


Subject(s)
Poria , Animals , Rats , Spleen , Albumins , Chromatography, Liquid , Cyclic AMP Response Element-Binding Protein
2.
Phytomedicine ; 95: 153875, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34911003

ABSTRACT

BACKGROUND: Poria cocos (Schw.) Wolf (PC), a fungus, has been used for more than 2000 years as a food and medicine in China. It has a very good therapeutic effect for functional dyspepsia (FD). However, the material basis and mechanism of PC on FD were not reported. PURPOSE: To investigate the function and potential mechanisms of PC including its three extracts (triterpenoid, PCT; water-soluble polysaccharide, PCWP; acidic polysaccharide, PCAP) on FD. STUDY DESIGN: The study explored the therapeutic effect of PC and its three extracts on FD in rats for the first time and discussed its mechanisms based on brain-gut peptides, immunity and repair of the gastrointestinal mucosa. METHODS: The chemical components of PC extracts were analyzed and quantified using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS) and gel permeation chromatography coupled with size exclusion chromatography (GPC/SEC). The FD rat models were established using weight-loaded forced swimming and alternate-day fasting for 42 days. After 14 days of treatment, the effect and mechanisms were investigated using ELISA, histopathology, immunohistochemistry as well as Western blot. RESULTS: Seventy-seven triterpenoids in PCT were identified. PCWP was primarily composed of component A (Mw: 3.831 × 107 Da), component B (Mw: 5.650 × 106 Da) and component C (Mw: 113,117 Da). PCAP was a homogeneous composition with an average Mw of 74,320 Da. PCT, PCWP and PCAP alleviated the symptoms of FD. These extracts promoted the repair of gastrointestinal mucosa and regulated the balance between the T helper cell (Th)1/Th2 axis and the Th17/Treg axis. PCT and PCWP regulated brain-gut peptides more effectively, PCWP and PCAP enhanced immunity more effectively. Further study demonstrated that these extracts may have enhanced immunity via the Toll-like receptor (TLR) and c-Jun N-terminal kinase (JNK) signaling pathways. CONCLUSIONS: PC extracts showed therapeutic effects on FD rats, and the mechanism of action involved multiple pathways. PCAP, which is often discarded in traditional applications, was effective. Our study provides new ideas for the application and development of PC extracts.


Subject(s)
Dyspepsia , Poria , Wolfiporia , Animals , Brain , Mucous Membrane , Peptides/pharmacology , Plant Extracts/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...