Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2668, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531906

ABSTRACT

International initiatives set ambitious targets for ecological restoration, which is considered a promising greenhouse gas mitigation strategy. Here, we conduct a meta-analysis to quantify the impacts of ecological restoration on greenhouse gas emissions using a dataset compiled from 253 articles. Our findings reveal that forest and grassland restoration increase CH4 uptake by 90.0% and 30.8%, respectively, mainly due to changes in soil properties. Conversely, wetland restoration increases CH4 emissions by 544.4%, primarily attributable to elevated water table depth. Forest and grassland restoration have no significant effect on N2O emissions, while wetland restoration reduces N2O emissions by 68.6%. Wetland restoration enhances net CO2 uptake, and the transition from net CO2 sources to net sinks takes approximately 4 years following restoration. The net ecosystem CO2 exchange of the restored forests decreases with restoration age, and the transition from net CO2 sources to net sinks takes about 3-5 years for afforestation and reforestation sites, and 6-13 years for clear-cutting and post-fire sites. Overall, forest, grassland and wetland restoration decrease the global warming potentials by 327.7%, 157.7% and 62.0% compared with their paired control ecosystems, respectively. Our findings suggest that afforestation, reforestation, rewetting drained wetlands, and restoring degraded grasslands through grazing exclusion, reducing grazing intensity, or converting croplands to grasslands can effectively mitigate greenhouse gas emissions.

2.
Tree Physiol ; 43(11): 1903-1916, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37584459

ABSTRACT

Carbon (C) allocation plays an important role in plant adaptation to water and nutrient stresses. However, the effects of drought and nutrient deficiencies on the allocation of recently fixed C in the plant-soil-microbe system remain largely unknown. Herein, we studied the response of C allocation of Sophora moorcroftiana (an indigenous pioneer shrub in Tibet) to drought, nitrogen (N) deficiency and phosphorus (P) deficiency using a microcosm experiment. The 13CO2 continuous labeling was used to trace C allocation in the plant-soil-microbe system. We found that drought significantly reduced plant 13C, but it increased 13C accumulation in soil. The decreased plant 13C under drought was attributed to the decrease of 13C in stem and root rather than that in leaf. The excess 13C fraction in the microbial biomass (MB13C) was reduced by N deficiency, but it was not affected by the combination of drought and N deficiency, indicating that drought weakened the effects of N deficiency on MB13C. By contrast, MB13C increased under the combination of drought and P deficiency, suggesting that drought enhanced the effects of P deficiency on MB13C. Drought and nutrient deficiencies regulated the belowground 13C allocation. Specifically, drought and P deficiency increased the allocation of 13C to root and N deficiency regulated the allocation of 13C to microbial biomass C and dissolved organic C in soil. Notably, soil 13C decreased with increasing plant 13C, while MB13C first decreased and then increased with increasing plant 13C. Overall, our study demonstrated that drought and nutrient deficiencies interactively affected C allocation in a plant-soil-microbe system and provided insights into C allocation strategies in response to multiple resource (water and nutrient) stresses under environmental changes.


Subject(s)
Carbon , Droughts , Soil , Biomass , Nutrients , Water/physiology
3.
Autophagy ; 19(5): 1533-1550, 2023 05.
Article in English | MEDLINE | ID: mdl-36300799

ABSTRACT

The quadrilateral reassortant IAV A/(H1N1) pdm09 is the pathogen responsible for the first influenza pandemic of the 21st century. The virus spread rapidly among hosts causing high mortality within human population. Efficient accumulation of virions is known to be important for the rapid transmission of virus. However, the mechanism by which A/(H1N1) pdm09 promotes its rapid replication has not been fully studied. Here, we found the NS1 of A/(H1N1) pdm09 mediated complete macroautophagy/autophagy, and then facilitated self-replication, which may be associated with the more rapid spread of this virus compared with H1N1WSN and H3N8JL89. We found that the promotion of self-replication could be mainly attributed to NS1pdm09 strongly antagonizing the inhibitory effect of LRPPRC on autophagy. The interaction between NS1pdm09 and LRPPRC competitively blocked the interaction of LRPPRC with BECN1/Beclin1, resulting in increased recruitment of BECN1 for PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit type 3) and induction of the initiation of autophagy. In conclusion, we uncover the unique molecular mechanism by which A/(H1N1) pdm09 utilizes autophagy to promote self-replication, and we provide theoretical basics for the analysis of the etiological characteristics of the A/(H1N1) pdm09 pandemic and the development of anti-influenza drugs and vaccines.Abbreviations: 293T: human embryonic kidney 293 cells; 293T_LRPPRC: stable LRPPRC expression 293T cells; 3-MA: 3-methyladenine; A549 cells: human non-small cell lung cancer cells; AA: amino acid; ACTB: actin beta; BECN1: beclin 1; BECN1 KO: BECN1 knockout 293T cells; Cal: calyculin A; Co-IP: co-immunoprecipitation; CQ: chloroquine; DC: dendritic cell; Eug: eugenol; GFP: green fluorescent protein; HA: hemagglutinin; HIV: human immunodeficiency virus; IAVs: Influenza A viruses; IFN: interferon; JL89: A/equine/Jilin/1/1989 (H3N8); LAMP2: lysosomal associated membrane protein 2; LRPPRC: leucine rich pentatriicopeptide repeat containing; LRPPRC KO: LRPPRC knockout 293T cells; M2: matrix 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MDCK: Madin-Darby canine kidney cells; MOI: multiplicity of infection; MS: mass spectrometry; NP: nucleoprotein; NS1: non-structural protein 1; NS1JL89: non-structural protein 1 of A/equine/Jilin/1/1989 (H3N8); NS1pdm09: non-structural protein 1 of A/(H1N1) pdm09; NS1SC09: non-structural protein 1 of A/Sichuan/2009 (H1N1); NS1WSN: non-structural protein 1 of A/WSN/1933 (H1N1); PB1: polymerase basic protein 1; PB1-F2: alternate reading frame discovered in PB1 gene segment; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PR8: A/PR/8/34 (H1N1); Rapa: rapamycin; RFP: red fluorescent protein; SC09: A/Sichuan/2009 (H1N1); SQSTM1/p62: sequestosome 1; STK4/MST1: serine/threonine kinase 4; TEM: transmission electron microscopy; TOMM20: translocase of outer mitochondrial membrane 20; WHO: World Health Organization; WSN: A/WSN/1933 (H1N1); WSN-NS1JL89: WSN recombinant strain in which NS1 was replaced with that of JL89; WSN-NS1SC09: WSN recombinant strain in which NS1 was replaced with that of SC09.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Lung Neoplasms , Animals , Dogs , Horses , Humans , Autophagy/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N8 Subtype/metabolism , Virus Replication , Beclin-1/metabolism , Madin Darby Canine Kidney Cells , Class III Phosphatidylinositol 3-Kinases/metabolism , Neoplasm Proteins , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
4.
Sci Total Environ ; 792: 148290, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34153752

ABSTRACT

Understanding changes in ecosystem services and their drivers is important for effective riparian ecosystem conservation and restoration. In the study, changes in water-related ecosystem services (soil conservation, water purification, and water yield) from 2007 to 2015 in Liaohe River Reserve, China were analyzed using the Integrated Valuation of Ecosystem Services and Trade-offs model. Impacts of landscape patterns on ecosystem services for different stages of restoration, i.e., farmland abandonment and natural succession stages were determined by stepwise regression analysis, respectively. The results showed that landscape fragmentation, landscape diversity, farmland fragmentation and grassland aggregation increased at the farmland abandonment stage. Landscape aggregation and diversity increased, whereas farmland fragmentation and grassland fragmentation decreased at the natural succession stage. Water-related ecosystem services improved since farmland abandonment, but water yield decreased from 1.57 × 106 m3 to 1.47 × 106 m3 at natural succession stage from 2011 to 2015. Water yield dynamics both at farmland abandonment and natural restoration stages were not significantly associated with landscape metrics. Dynamics of soil retention and water purification services at the farmland abandonment stage were significantly affected by landscape patch numbers, farmland division, and grassland aggregation. Interspersion and juxtaposition between different patch types, farmland edge density, grassland division, and grassland aggregation played significant roles in the dynamics of soil retention and water purification services at the natural restoration stage. The results provide scientific guidance for riparian management at the landscape scale to better restore water-related ecosystem services.


Subject(s)
Ecosystem , Rivers , China , Soil , Water/analysis
5.
Sci Total Environ ; 785: 147134, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33940408

ABSTRACT

To evaluate the evolution of river water quality in a changing environment, measuring the objective water quality is critical for understanding the rules of river water pollution. Based on the sample entropy theory and a nonlinear statistical method, this study aims to identify the spatiotemporal dynamics of water quality and its complexity in the Yangtze River basin using time series data, to separate the contributions of human activity and climate change to water quality, and to establish a data-driven risk assessment framework for the spatial (potential risk) and temporal (direct risk) aspects of water pollution. The results demonstrate that the spatiotemporal dynamics of water quality and sample entropy in each monitoring section are closely related to the characteristics of the corresponding location. The water quality of the main stream is superior, and its complexity is less than that of the tributaries. Cascade reservoir operation and vegetation status, agricultural production, and rainfall patterns exert great influences in the upper, middle, and lower reaches, respectively. Dam construction, urban agglomeration development, and interactions between river and lake are also influencing factors. An attributional analysis found that climate change and human activities negatively contributed to the evolution of NH3-N concentration in most of the monitored sections, and the average relative contribution rates of human activities to changes in water quality in the main and tributary streams were -55.46% and -48.49%, respectively. In addition, the construction of data-driven risk assessment framework can efficiently and accurately assess the potential and direct water pollution risks of rivers.

6.
Ecotoxicol Environ Saf ; 207: 111309, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32931970

ABSTRACT

Cadmium (Cd2+), as the primary contaminant in Chinese soils, is dangerous to human health and ecological security. Invasive plant Spartina alterniflora in Chinese coastal wetlands presents a promising feedstock for biochar, which is an efficient adsorbent for heavy metal removal. S. alterniflora harvested in summer, autumn and winter were pyrolyzed to produce biochars. We analyzed the effects of harvest time and desalination of feedstock on biochar properties and Cd2+ adsorption capacity in aqueous solution. Biochars were characterized by pH probe, elemental analyzer, SEM, BJH, BET, and FTIR, and the Cd2+ concentrations were measured using AAS. Except pH (9.85-10.95) and nitrogen contents (0.71-1.59%), other biochar properties had no linear correlations with harvest time. Biochars produced from feedstock harvested in autumn had the highest carbon contents (73.25%) and lowest functional groups diversity (CC and -CHx). The pH and carbon contents (64.44-73.25%) were increased by desalination treatment. The surface area (0.48-2.27 m2/g), total pore volume (0.0015-0.0055 mL/g), mesopore volume (0.0015-0.0052 mL/g), and Cd2+ adsorption capacities (16.29-32.34 mg/g) were affected by desalination treatment, and the effects varied with harvest time. Biochars produced from desalted feedstock harvested in summer and untreated feedstock harvested in winter showed higher surface area, porosity, and Cd2+ adsorption capacity. Moderate salt contents (1.5-3.0% in chloride content) in feedstock promote the formation of biochars with higher surface area and porosity.


Subject(s)
Cadmium/chemistry , Charcoal/chemistry , Poaceae/chemistry , Water Pollutants, Chemical/chemistry , Water Purification , Adsorption , Cadmium/analysis , Carbon , Metals, Heavy , Pyrolysis , Soil/chemistry , Solutions , Time , Water , Wetlands
7.
Ecotoxicol Environ Saf ; 205: 111172, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32846300

ABSTRACT

Following oil extraction in the wetland of the Yellow River Delta, heavy metal contamination of coastal saline-alkaline soil, especially with cadmium (Cd), has become a serious environmental problem in some regions. Biochar application has been proposed to remedy Cd-contaminated soil, but the remediation effect is related to preparation conditions of biochar (e.g., pyrolysis temperature and raw material) and soil properties. The invasive plant, Spartina alterniflora, produces a high amount of biomass, making it suitable for biochar production in coastal China. We investigated the effect of S. alterniflora-derived biochar (SDB) pyrolyzed at four temperatures (350, 450, 550, and 650 °C) crossed with three addition ratios (1, 5, and 10%) and control on Cd contamination of coastal saline-alkaline soil. Pyrolysis temperature affected pH, surface area, and functional groups of SDB. SDB markedly improved soil pH and soil organic matter, but the degree of improvement was affected by pyrolysis temperature and addition ratio. SDB significantly altered available Cd content in soil, but reduced it only at low pyrolysis temperatures (350 and 450 °C). Available Cd content had a positive correlation with soil pH (R2 = 0.298, P < 0.01), but was not related to salinity and soil organic matter content. Thus, SDB pyrolyzed at 350 °C with 5% addition was optimal for passivating Cd in coastal saline-alkaline soil, since available Cd content in soil decreased mostly (by 26.9%). These findings act as a reference for the development of an application strategy for SDB to ameliorate Cd-contaminated coastal saline-alkaline soil.


Subject(s)
Cadmium/analysis , Charcoal/chemistry , Environmental Restoration and Remediation/methods , Poaceae/chemistry , Soil Pollutants/analysis , Soil/chemistry , Alkalies/analysis , Biomass , China , Models, Theoretical , Pyrolysis , Salinity , Wetlands
8.
PLoS One ; 14(6): e0218611, 2019.
Article in English | MEDLINE | ID: mdl-31226149

ABSTRACT

The differences in archaeal diversity and community composition in the sediments and waters of the Qinhuangdao coastal aquaculture zone were investigated. Furthermore, the associations between dominant archaeal taxa with geographic and environmental variables were evaluated. High-throughput sequencing of archaeal 16S rRNA genes yielded a total of 176,211 quality-filtered reads and 1,178 operational taxonomic units (OTUs) overall. The most abundant phylum and class among all communities were Thaumarchaeota and Nitrososphaeria, respectively. Beta diversity analysis indicated that community composition was divided into two groups according to the habitat type (i.e., sediments or waters). Only 9.8% OTUs were shared by communities from the two habitats, while 73.9% and 16.3% of the OTUs were unique to sediment or water communities, respectively. Furthermore, the relative abundances of the dominant OTUs differed with habitat type. Investigations of relationships between dominant OTUs and environmental variables indicated that some dominant OTUs were more sensitive to variation in environmental factors, which could be due to individual taxonomic differences in lifestyles and biological processes. Overall, the investigation of archaeal community variation within the Qinhuangdao coastal aquaculture zone provides an important baseline understanding of the microbial ecology in this important ecosystem.


Subject(s)
Aquaculture , Archaea/genetics , Biodiversity , Ecosystem , Geologic Sediments/analysis , Animals , Archaea/classification , DNA, Archaeal/analysis , DNA, Archaeal/genetics , Geologic Sediments/microbiology , High-Throughput Nucleotide Sequencing , Microbiota , Phylogeny , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Analysis, RNA
9.
Opt Lett ; 44(4): 1031-1034, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30768048

ABSTRACT

To overcome the limits of traditional technologies, which cannot achieve high resolution and high throughput simultaneously, here we propose, to the best of our knowledge, a novel method, i.e., achromatic Talbot lithography, to fabricate large-area nanopatterns fast and precisely. We successfully demonstrate reflection color filters with a maximum size of about 0.72×0.72 mm2 with a time of only 20 s that have colors similar to simulations and small-area devices fabricated by electron beam lithography. These results indicate the possibility of large-scale fabrication of plasmonic color filters with high resolution efficiently by the achromatic Talbot lithography method.

10.
Sci Rep ; 8(1): 2228, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396551

ABSTRACT

The study aimed to identify the lateral heterogeneity of soil physicochemical properties in riparian zones, and its underlying drivers during natural restoration after agricultural abandonment. Abandoned farmlands, after 5-year natural restoration, within 500 m from the edges on both sides of Liaohe River were selected as the study area. Soil physicochemical properties of four lateral buffers (<10 m, 10~100 m, 100~300 m, and >300 m from river edge, respectively) along riparian zones were measured. The results showed that riparian soils were characterized by high sand content (78.88%~96.52%) and poor soil nutrients. Soil silt content, organic carbon (OC), cation exchange capacity (CEC), total nitrogen (TN), and available nitrogen (AN) increased laterally with increasing distance from river edge, while soil sand content decreased. Total phosphorus (TP) and available phosphorus (AP) are not spatially autocorrelated. Soil OC, TN, AN, and CEC along upstream and midstream reaches showed negative spatial autocorrelation along the lateral gradients, and positive along downstream reach. Altitude, distance from river edge and distance from nearest farmland were the pronounced factors affecting soil physicochemical properties in this study.

11.
J Ophthalmol ; 2016: 2989086, 2016.
Article in English | MEDLINE | ID: mdl-27478633

ABSTRACT

Objective. To observe the fellow eye in patients undergoing surgery on one eye for treating myopic traction maculopathy. Methods. 99 fellow eyes of consecutive patients who underwent unilateral surgery to treat MTM were retrospectively evaluated. All patients underwent thorough ophthalmologic examinations, including age, gender, duration of follow-up, refraction, axial length, intraocular pressure, lens status, presence/absence of a staphyloma, and best-corrected visual acuity (BCVA). Fundus photographs and SD-OCT images were obtained. When feasible, MP-1 microperimetry was performed to evaluate macular sensitivity and fixation stability. Results. At an average follow-up time of 24.7 months, 7% fellow eyes exhibited partial or complete MTM resolution, 68% stabilized, and 25% exhibited progression of MTM. Of the 38 eyes with "normal" macular structure on initial examination, 11% exhibited disease progression. The difference in progression rates in Groups 2, 3, and 4 was statistically significant. Refraction, axial length, the frequency of a posterior staphyloma, chorioretinal atrophy, initial BCVA, final BCVA, and retinal sensitivity all differed significantly among Groups 1-4. Conclusions. Long axial length, chorioretinal atrophy, a posterior staphyloma, and anterior traction contribute to MTM development. Patients with high myopia and unilateral MTM require regular OCT monitoring of the fellow eye to assess progression to myopic pre-MTM. For cases exhibiting one or more potential risk factors, early surgical intervention may maximize the visual outcomes.

12.
BMC Ophthalmol ; 15: 93, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26250415

ABSTRACT

BACKGROUND: Recently it was suggested that high myopia macular holes (HMMH) and macular holes accompanied by retinal detachment occur in the advanced stages of myopia traction maculopathy (MTM), while macular retinoschisis, shallow retinal detachment without holes, and lamellar macular holes occur in the early stages of MTM. Complete vitreous cortex removal associated with internal limiting membrane peeling is now widely used to treat HMMH. However, it remains uncertain at what HMMH stage patients would benefit most from surgical intervention. Our study was aimed to evaluate the postoperative anatomical changes and functional outcomes of high myopia macular holes (HMMH). METHODS: Patients were retrospectively collected between March 2009 and August 2011. Before and 1st, 3rd, and 9th month after 23G pars plana vitrectomy, all patients underwent a complete ophthalmologic examination, spectral domain optical coherence tomography (SD-OCT) and MP-1. At each follow-up, best-corrected visual acuity (BCVA), photoreceptor inner and outer segments (IS/OS) defects, and retinal sensitivity (RS) were investigated. According to different preoperative macular hole morphologies, patients were divided into three groups: Group 1, macular hole with epiretinal membrane (ERM) traction and macular retinoschisis; Group 2, full-thickness macular hole (FTMH); Group 3, FTMH with subretinal fluid. RESULTS: 43 eyes from 43 patients met the inclusion criteria. The mean age was 60 years. BCVA and RS were significantly improved after vitrectomy; the mean IS/OS defect was significantly reduced. At 9 postoperative months, 11 of 43 (25.6 %) eyes achieved IS/OS junction integrity; 9 of these 11 (81.8 %) eyes belonged to Group 1, 2 (18.2 %) belonged to Group 2. CONCLUSIONS: Pars plana vitrectomy combined with ILM peeling and gas tamponade results in limited functional outcomes in patients with HMMH. The appearance of subretinal fluid indicates a worse prognosis for surgical intervention.


Subject(s)
Myopia, Degenerative/physiopathology , Retina/physiopathology , Retinal Perforations/physiopathology , Visual Acuity/physiology , Aged , Endotamponade , Epiretinal Membrane/surgery , Female , Humans , Male , Middle Aged , Myopia, Degenerative/surgery , Postoperative Period , Retinal Perforations/surgery , Retrospective Studies , Subretinal Fluid , Tomography, Optical Coherence , Visual Field Tests , Vitrectomy
SELECTION OF CITATIONS
SEARCH DETAIL
...