Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 86(1): 174-186, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35927589

ABSTRACT

Upwelling may generate unique hydrological and environmental heterogeneity, leading to enhanced diffusion to reshape microbial communities. However, it remains largely unknown how different microbial taxa respond to highly complex and dynamic upwelling systems. In the present study, geographic patterns and co-occurrence network of different microbial communities in response to upwelling were examined. Our results showed that coastal upwelling shaped prokaryotic and eukaryotic microbial community and decreased their diversity. In addition, bacteria and microeukaryote had similar biogeographical patterns with distinct assembly mechanisms. The impact of stochastic processes on bacteria was significantly stronger compared with microeukaryote in upwelling. Lower network complexity but more frequent interaction was found in upwelling microbial co-occurrence. However, the upwelling environment increased the robustness and modularity of bacterial network, while eukaryotic network was just the opposite. Co-occurrence networks of bacteria and microeukaryote showed significant distance-decay patterns, while the bacterial network had a stronger spatial variation. Temperature and salinity were the strongest environmental factors affecting microbial coexistence, whereas the topological characteristics of bacterial and eukaryotic networks had different responses to the upwelling environment. These findings expanded our understanding of biogeographic patterns of microbial community and ecological network and the underlying mechanisms of different microbial taxa in upwelling.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Phylogeny , Eukaryota
2.
Front Microbiol ; 13: 1052776, 2022.
Article in English | MEDLINE | ID: mdl-36425038

ABSTRACT

Global change and local stressors are simultaneously affecting the nearshore corals, and microbiome flexibility may assist corals in thriving under such multiple stressors. Here, we investigated the effects of various environmental variables on Galaxea fascicularis holobiont from nearshore and offshore reefs. These nearshore reefs were more turbid, eutrophic, and warm than offshore reefs. However, coral physiological parameters did not differ significantly. Corals under stressful nearshore environments had low symbiont diversity and selected more tolerant Symbiodiniaceae. The bacterial diversity of offshore corals was significantly higher, and their community composition varied obviously. Diffusion limitations and environmental heterogeneity were essential in structuring microbial communities. Functional annotation analysis demonstrated significant differences between nearshore and offshore corals in bacterial functional groups. Environmental stress significantly reduced the complexity and connectivity of bacterial networks, and the abundances of keystone taxa altered considerably. These results indicated that corals could thrive nearshore through holobiont plasticity to cope with multiple environmental stresses.

3.
Mar Pollut Bull ; 173(Pt B): 113048, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678546

ABSTRACT

This study initially investigated the coral status during the unexpected bleaching event in three coastal areas in Northwest Hainan coastal areas and analyzed changes in coral holobionts of the healthy and bleached Galaxea fascicularis. Coral coverage had declined severely, and the bleaching rate was extremely high during heat stress. The bleached corals had lower maximum photosynthetic yield, actual photosynthetic yield, zooxanthellae density, and chlorophyll a content than the healthy G. fascicularis, but there was no significant difference in protein, carbohydrate and lipid in eutrophic waters. The diversity and community composition of Symbiodiniaceae and symbiotic bacteria between healthy and bleached G. fascicularis showed no difference. Function prediction of the symbiotic bacteria revealed that the metabolism process was the main pathway of annotation. Present findings suggested that energy reserve functioning and high stability of the holobiont structure and might provide opportunities to G. fascicularis to adapt to eutrophication and heat stress.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Chlorophyll A , Eutrophication , Heat-Shock Response , Symbiosis
4.
Front Physiol ; 11: 390, 2020.
Article in English | MEDLINE | ID: mdl-32411015

ABSTRACT

The health of coral reef has declined significantly around the world due to the impact of human activities and natural environment changes, and corals have to develop effective resistance mechanisms to survive. In this study, we examined the physiological characteristics and Symbiodiniaceae types of four dominant scleractinian corals in the reefs at the Wuzhizhou Island (WZZ) in South China Sea. The water environmental conditions are complex on the north side of WZZ due to regional geography and tourism development, and all corals had their unique physiological conditions and Symbiodiniaceae types. For all corals of this study, the rETRm ax and protein content were significantly lower and the SOD enzyme activity was significantly higher in the north than in the south. Interestingly, ITS2 genotyping showed that Galaxea fascicularis contained dominant Symbiodiniaceae either genotype C21 or D1a depending on the regional environmental stress, and had stronger heterotrophy than the other three coral species. In addition, the light use efficiency of the dominant Symbiodiniaceae type C1 for Pocillopora verrucosa was significantly lower in the north and the half saturating irradiance was stable. Besides, Montipora truncata and P. verrucosa increased their density of the symbiotic zooxanthella C1 in the north to offset the decline of photosynthetic efficiency and thus supply energy. For Porites lutea and G. fascicularis, their half saturating irradiance declined sharply in the north, where P. lutea resorted to heterotrophic feeding to balance the energy budget when the number of zooxanthellas fell short and G. fascicularis reduced its energy reserve significantly when the energy source was limited. We thus demonstrated the differences in the physiological responses and energy metabolism strategies between the zooxanthella and the host coral of the four reef-building coral species under the stress of complex water environment on the north side of WZZ. The corals were found to cope with natural and anthropogenic stressors by adjusting the nutrient input sources and the energy structure metabolism of coral hosts or adapting to more sustainable relationship with Symbiodiniaceae clades. The corals exhibited their capacity against long-term disturbances by developing their own successful resistance mechanisms at symbiotic relationship and energy metabolism level.

SELECTION OF CITATIONS
SEARCH DETAIL
...