Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119823, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-33901945

ABSTRACT

Soil organic matter (SOM) is an important index used to evaluate soil fertility and nutrient availability, and it is also an important component of precision agriculture. In this study, in order to quickly and efficiently estimate the SOM content of farmland soil, we took 190 farmland soil samples in Jingbian County and measureed the SOM content of the samples in the lab and collected the corresponding Vis-NIR spectroscopy data. Based on the six pretreatment methods, a competitive adaptive weighting algorithm (CARS) is used for characteristic wavelength selection. Random forest (RF) regression is used to establish the predictive SOM model. The results indicate that after the CARS algorithm screens the different spectral variables, the optimal variable sets of the seven spectral variables are 15, 40, 30, 23, 20, 26, and 23, respectively. The accuracy of the model is improved after the CARS algorithm screens the different spectral variables. A total of 15 characteristic variables from the 2151 spectral wavelengths were used as the optimal spectral variable subset; RF shortened the training time required during the SOM modeling process and dramatically improved the model's accuracy and predictive ability, and the R2 of the validation set increased from 0.21 to 0.96, and the RPD increased from 0.46 to 3.02. The RPIQ increased from 1.25 to 4.41. Among the tested models, the CR-RF model produced the best results. The R2 and RMSE values of the calibration set are 0.91 and 0.49, and the R2, RMSE, RPD, and RPIQ values of the validation set are 0.96, 0.51, 3.02, and 4.41, respectively. Accurate prediction of the SOM of the cultivated layer in the study area was realized.

2.
Sensors (Basel) ; 19(8)2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31022958

ABSTRACT

Blue carbon (BC) ecosystems are an important coastal resource, as they provide a range of goods and services to the environment. They play a vital role in the global carbon cycle by reducing greenhouse gas emissions and mitigating the impacts of climate change. However, there has been a large reduction in the global BC ecosystems due to their conversion to agriculture and aquaculture, overexploitation, and removal for human settlements. Effectively monitoring BC ecosystems at large scales remains a challenge owing to practical difficulties in monitoring and the time-consuming field measurement approaches used. As a result, sensible policies and actions for the sustainability and conservation of BC ecosystems can be hard to implement. In this context, remote sensing provides a useful tool for mapping and monitoring BC ecosystems faster and at larger scales. Numerous studies have been carried out on various sensors based on optical imagery, synthetic aperture radar (SAR), light detection and ranging (LiDAR), aerial photographs (APs), and multispectral data. Remote sensing-based approaches have been proven effective for mapping and monitoring BC ecosystems by a large number of studies. However, to the best of our knowledge, this is the first comprehensive review on the applications of remote sensing techniques for mapping and monitoring BC ecosystems. The main goal of this review is to provide an overview and summary of the key studies undertaken from 2010 onwards on remote sensing applications for mapping and monitoring BC ecosystems. Our review showed that optical imagery, such as multispectral and hyper-spectral data, is the most common for mapping BC ecosystems, while the Landsat time-series are the most widely-used data for monitoring their changes on larger scales. We investigate the limitations of current studies and suggest several key aspects for future applications of remote sensing combined with state-of-the-art machine learning techniques for mapping coastal vegetation and monitoring their extents and changes.

3.
Sci Rep ; 7: 40607, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28079138

ABSTRACT

Based on annual average PM2.5 gridded dataset, this study first analyzed the spatiotemporal pattern of PM2.5 across Mainland China during 1998-2012. Then facilitated with meteorological site data, land cover data, population and Gross Domestic Product (GDP) data, etc., the contributions of latent geographic factors, including socioeconomic factors (e.g., road, agriculture, population, industry) and natural geographical factors (e.g., topography, climate, vegetation) to PM2.5 were explored through Geographically Weighted Regression (GWR) model. The results revealed that PM2.5 concentrations increased while the spatial pattern remained stable, and the proportion of areas with PM2.5 concentrations greater than 35 µg/m3 significantly increased from 23.08% to 29.89%. Moreover, road, agriculture, population and vegetation showed the most significant impacts on PM2.5. Additionally, the Moran's I for the residuals of GWR was 0.025 (not significant at a 0.01 level), indicating that the GWR model was properly specified. The local coefficient estimates of GDP in some cities were negative, suggesting the existence of the inverted-U shaped Environmental Kuznets Curve (EKC) for PM2.5 in Mainland China. The effects of each latent factor on PM2.5 in various regions were different. Therefore, regional measures and strategies for controlling PM2.5 should be formulated in terms of the local impacts of specific factors.

4.
IEEE Trans Image Process ; 23(9): 4160-4174, 2014 09.
Article in English | MEDLINE | ID: mdl-24988595

ABSTRACT

The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.

5.
Sensors (Basel) ; 12(4): 4764-92, 2012.
Article in English | MEDLINE | ID: mdl-22666057

ABSTRACT

Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+). Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community.

SELECTION OF CITATIONS
SEARCH DETAIL
...