Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2400159121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814870

ABSTRACT

Lithium is an emerging strategic resource for modern energy transformation toward electrification and decarbonization. However, current mainstream direct lithium extraction technology via adsorption suffers from sluggish kinetics and intensive water usage, especially in arid/semiarid and cold salt-lake regions (natural land brines). Herein, an efficient proof-of-concept integrated solar microevaporator system is developed to realize synergetic solar-enhanced lithium recovery and water footprint management from hypersaline salt-lake brines. The 98% solar energy harvesting efficiency of the solar microevaporator system, elevating its local temperature, greatly promotes the endothermic Li+ extraction process and solar steam generation. Benefiting from the photothermal effect, enhanced water flux, and enriched local Li+ supply in nanoconfined space, a double-enhanced Li+ recovery capacity was delivered (increase from 12.4 to 28.7 mg g-1) under one sun, and adsorption kinetics rate (saturated within 6 h) also reached twice of that at 280 K (salt-lake temperature). Additionally, the self-assembly rotation feature endows the microevaporator system with distinct self-cleaning desalination ability, achieving near 100% water recovery from hypersaline brines for further self-sufficient Li+ elution. Outdoor comprehensive solar-powered experiment verified the feasibility of basically stable lithium recovery ability (>8 mg g-1) directly from natural hypersaline salt-lake brines with self-sustaining water recycling for Li+ elution (440 m3 water recovery per ton Li2CO3). This work offers an integrated solution for sustainable lithium recovery with near zero water/carbon consumption toward carbon neutrality.

2.
Sci Adv ; 10(22): eadj3760, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820164

ABSTRACT

Intrinsic water evaporation demands a high energy input, which limits the efficacy of conventional interfacial solar evaporators. Here, we propose a nanoconfinement strategy altering inherent properties of water for solar-driven water evaporation using a highly uniform composite of vertically aligned Janus carbon nanotubes (CNTs). The water evaporation from the CNT shows the unexpected diameter-dependent evaporation rate, increasing abnormally with decreasing nanochannel diameter. The evaporation rate of CNT10@AAO evaporator thermodynamically exceeds the theoretical limit (1.47 kg m-2 hour-1 under one sun). A hybrid experimental, theoretical, and molecular simulation approach provided fundamental evidence of different nanoconfined water properties. The decreased number of H-bonds and lower interaction energy barrier of water molecules within CNT and formed water clusters may be one of the reasons for the less evaporative energy activating rapid nanoconfined water vaporization.

3.
Proc Natl Acad Sci U S A ; 120(9): e2217256120, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36802424

ABSTRACT

Crystallographic control of crystals as catalysts with precise geometrical and chemical features is significantly important to develop sustainable chemistry, yet highly challenging. Encouraged by first principles calculations, precise structure control of ionic crystals could be realized by introducing an interfacial electrostatic field. Herein, we report an efficient in situ dipole-sourced electrostatic field modulation strategy using polarized ferroelectret, for crystal facet engineering toward challenging catalysis reactions, which avoids undesired faradic reactions or insufficient field strength by conventional external electric field. Resultantly, a distinct structure evolution from tetrahedron to polyhedron with different dominated facets of Ag3PO4 model catalyst was obtained by tuning the polarization level, and similar oriented growth was also realized by ZnO system. Theoretical calculations and simulation reveal that the generated electrostatic field can effectively guide the migration and anchoring of Ag+ precursors and free Ag3PO4 nuclei, achieving oriented crystal growth by thermodynamic and kinetic balance. The faceted Ag3PO4 catalyst exhibits high performance in photocatalytic water oxidation and nitrogen fixation for valuable chemicals production, validating the effectiveness and potential of this crystal regulation strategy. Such an electrically tunable growth concept by electrostatic field provides new synthetic insights and great opportunity to effectively tailor the crystal structures for facet-dependent catalysis.

4.
Environ Sci Technol ; 56(15): 10997-11005, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35860842

ABSTRACT

Membrane fouling compromises the benefits of membrane technology, leading to its performance deterioration and incremental cost. Coupling with an electric field has been attractive but is limited by the electrical dependence of the electrophoresis (EP) mechanism and undesired faradic reactions. This study reports a universal dielectrophoresis-based (DEP) membrane antifouling strategy for electronegative, electropositive, and neutral colloidal foulants, which depends on the particle polarizability rather than its charge. The porous Ni@PVDF model electroconductive membrane was fabricated to construct a nonuniform electric field inducing DEP, while applying a low voltage avoided side electrochemical reactions. For electronegative SiO2(-) and electropositive Al2O3(+) particles with a lower relative permittivity than the medium water (78), the membrane permeability all remarkably increased by 90.1% under AC/DC (±1.0 V) fields. By contrast, serious membrane fouling occurred for the BaTiO3 colloids with a higher relative permittivity (∼2000). Notably, the permittivity of nearly all colloids in wastewater treatment is much less than that of water, which makes the dielectrophoresis-based antifouling strategy universal. The theoretical simulation systematically analyzed the forces on particles including DEP, EP, and others, indicating that the formed protected area on the membrane pore wall by DEP forces prevented the irreversible membrane blockage of colloids and facilitated loose cake layer formation for alleviating membrane fouling. In brief, this work reported a hopeful concept for dielectrophoresis-based membrane antifouling and verified its antifouling mechanism.


Subject(s)
Biofouling , Biofouling/prevention & control , Colloids , Electrophoresis/methods , Silicon Dioxide , Water
5.
G3 (Bethesda) ; 11(11)2021 10 19.
Article in English | MEDLINE | ID: mdl-34849791

ABSTRACT

Using genetic mutations to study protein functions in vivo is a central paradigm of modern biology. Single-domain camelid antibodies generated against GFP have been engineered as nanobodies or GFP-binding proteins (GBPs) that can bind GFP as well as some GFP variants with high affinity and selectivity. In this study, we have used GBP-mCherry fusion protein as a tool to perturb the natural functions of a few kinetochore proteins in the fission yeast Schizosaccharomyces pombe. We found that cells simultaneously expressing GBP-mCherry and the GFP-tagged inner kinetochore protein Cnp1 are sensitive to high temperature and microtubule drug thiabendazole (TBZ). In addition, kinetochore-targeted GBP-mCherry by a few major kinetochore proteins with GFP tags causes defects in faithful chromosome segregation. Thus, this setting compromises the functions of kinetochores and renders cells to behave like conditional mutants. Our study highlights the potential of using GBP as a general tool to perturb the function of some GFP-tagged proteins in vivo with the objective of understanding their functional relevance to certain physiological processes, not only in yeasts, but also potentially in other model systems.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Carrier Proteins , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Kinetochores/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
6.
Nano Lett ; 20(11): 8185-8192, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33125239

ABSTRACT

Highly permselective nanostructured membranes are desirable for the energy-efficient molecular sieving on the subnanometer scale. The nanostructure construction and charge functionalization of the membranes are generally carried out step by step through the conventional layer-by-layer coating strategy, which inevitably brings about a demanding contradiction between the permselective performance and process efficiency. For the first time, we report the concurrent construction of the well-defined molecular sieving architectures and tunable surface charges of nanofiltration membranes through precisely controlled release of the nanocapsule decorated polyethyleneimine and carbon dioxide. This novel strategy not only substantially shortens the fabrication process but also leads to impressive performance (permeance up to 37.4 L m-2 h-1 bar-1 together with a rejection 98.7% for Janus Green B-511 Da) that outperforms most state-of-art nanofiltration membranes. This study unlocks new avenues to engineer next-generation molecular sieving materials simply, precisely, and cost efficiently.

SELECTION OF CITATIONS
SEARCH DETAIL
...