Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 738
Filter
1.
Int J Biol Macromol ; : 135517, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260642

ABSTRACT

Escherichia coli and Staphylococcus aureus are the most prevalent pathogenic bacteria, often resulting in the foodborne disease outbreaks through food spoilage and foodborne infections. To prevent and control food spoilage and foodborne infections induced by Escherichia coli and Staphylococcus aureus, the antibacterial hydrogels were fabricated using fibrinogen hydrolysate-carrageenan (AHs-C) and flavonoids (apigenin and quercetin), and the antibacterial effect of the composite hydrogels against Escherichia coli and Staphylococcus aureus was further investigated. The results of mechanical property exhibited that the composite hydrogels with 0.2 % of apigenin and quercetin (AHs-C-Ap/Que) showed the highest hardness and swelling property compared with the separate addition of apigenin or quercetin. Scanning electron microscopy and atomic force microscopy showed that the dense networks were formed in the hydrogels of AHs-C-Ap/Que., and the average roughness of AHs-C-Ap/Que. significantly increased to 30.70 nm compared with AHs-C. 1H NMR and FTIR spectra demonstrated that apigenin and quercetin were bound to AHs-C by hydrogen bond, hydrophobic interaction and Schiff base, where the interactions between Ap/Que. and AHs-C was stronger compared with the separate addition of apigenin or quercetin. The hydrogels of AHs-C-Ap/Que. showed the highest antibacterial capacity and antibacterial adhesion against Escherichia coli and Staphylococcus aureus. The antibacterial adhesion assay showed that 99 % removal ratios for E. coli and S. aureus were observed in AHs-C-Ap/Que. hydrogels, which showed a great potential to prevent food spoilage and foodborne infections.

2.
Soc Sci Med ; 360: 117344, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39278011

ABSTRACT

The growing emphasis on reducing health disparities and addressing social determinants of health (SDH) has prompted many national and local health agencies to report population health data by SDH measures. However, many agencies rely on descriptive epidemiology methods for such reports and are susceptible to biased findings due to inadequate confounding control. In this brief analytic essay, using the data presented in an HIV Surveillance Report by the Centers for Disease Control and Prevention (CDC), we demonstrated an example of how reporting health outcomes by SDH with descriptive methods could bias the results and conclusions. SDH are causes of health disparities and SDH analysis requires analytic epidemiology methods to ensure valid research results and effective interventions.

3.
Front Immunol ; 15: 1441863, 2024.
Article in English | MEDLINE | ID: mdl-39229266

ABSTRACT

This perspective article delves into a novel integration of Yin-Yang theory-an ancient Chinese philosophical cornerstone-with the sophisticated realm of immunology. Given the intricate concepts inherent in immunology, many students find it challenging to comprehend the delicate mechanisms governing immune equilibrium and regulation. Given the deep-rooted understanding of Yin-Yang theory among Chinese students, we advocate for an educational strategy that contextualizes the concept of immune equilibrium within the framework of Yin-Yang, thereby offering a more intuitive and engaging learning experience. This method not only capitalizes on the cultural significance of Yin-Yang, but also corresponds to its principles of equilibrium and harmony, thus mirroring the homeostatic essence of immune responses. This article critically assesses this technique's capacity to bolster immune comprehension amongst Chinese students, while also considering its limitations. Despite these limitations, the fusion of these seemingly divergent fields holds substantial promise for augmenting immunology education, promoting critical thinking, and advancing cross-cultural academic discourse. The amalgamation of age-old philosophical insights with modern scientific exploration prompts a reassessment of educational methodologies within immunology, underscoring a novel pedagogical approach that bridges traditional wisdom with contemporary scientific education.


Subject(s)
Allergy and Immunology , Yin-Yang , Allergy and Immunology/education , Allergy and Immunology/history , Humans , Teaching , China
4.
J Clin Lipidol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39294020

ABSTRACT

OBJECTIVES: Homozygous familial hypercholesterolemia (HoFH) is characterized by elevated low-density lipoprotein cholesterol (LDL-C) and early-onset cardiovascular disease. To assess the therapeutic effects of liver transplantation (LT) on HoFH patients, we observed and analyzed the outcomes of HoFH children after LT. STUDY DESIGN: This prospective cohort study included all LT candidates under 18 years old diagnosed with HoFH at Ren Ji Hospital between November 2017 and July 2021. The patients were followed until October 2023. They were treated according to the standard protocol at our center. We collected data on changes in lipid profiles, clinical manifestations, and cardiovascular complications at different time points, and recorded postoperative recipient and graft survival. RESULTS: Fourteen HoFH patients with a median age of 7 (2-12) years were included. Preoperatively, xanthomas and arcus corneas occurred in 14 and 3 patients, respectively, with 10 patients showing mild cardiovascular disease. All patients underwent LT. Recipient and graft survival rates were 100 % over a median follow-up duration of 35 (27-71) months. Median LDL-C levels dropped from 11.83 (7.99-26.14) mmol/L preoperatively to 2.3 (1.49-3.39) mmol/L postoperative at the last measurement. Thirteen patients discontinued lipid-lowering treatment after LT, while only one patient resumed statins 6 months post-operation. Xanthomas and arcus corneas significantly improved. Cardiovascular complications regressed in five patients, with no progression observed in the others. CONCLUSIONS: LT is a safe and effective treatment for severe HoFH patients beyond lipid-lowering control. Early LT improves prognosis and quality of life while minimizing the risk of cardiovascular complications.

5.
Adv Biol (Weinh) ; : e2400128, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164220

ABSTRACT

Early allograft dysfunction (EAD) is a frequent phenomenon, leading to increased graft loss and higher mortality after liver transplantation (LT). Despite significant efforts for early diagnosis of EAD, there is no existing approach that can predict EAD on the first post-operative day. The aim is to define a metabolite-based biomarker on the first day after LT complicated with EAD. Ten patients diagnosed with EAD and 26 non-EAD are recruited for the study. A HPLC-MS/MS is used to determine 14 amino acids and 15 bile acids serum concentration. Comparative analyses are conducted between EAD and non-EAD groups. Arginine is identified as the most significant metabolite distinguishing the EAD and non-EAD groups, and therefore, is identified as a potential biomarker of EAD. The optimal cut-off value for arginine is 52.09 µmol L-1, with an AUROC of 0.804 (95% confidence interval: 0.638-0.917, p < 0.001), yielding a sensitivity of 100%, specificity of 53.8%, and Youden index of 0.54, NPVof 100%, and PPV of 45.45%. In summary, the study indicated that targeted metabolomics analysis would be a promising strategy for discovering novel biomarkers to predict EAD. The identified arginine may be helpful in developing an objective diagnostic method for EAD.

6.
Clin Mol Hepatol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39159949

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.

8.
Food Chem ; 461: 140794, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39146680

ABSTRACT

This study aimed to prepare soy protein isolate-xanthan gum complexes (SPI-XG) at pH 7.0 and as emulsifiers to prepare Pickering emulsions for delivering quercetin (Que). The results showed that SPI-XG exhibited a gel network structure in which protein particles were embedded. Fourier transform infrared spectroscopy (FTIR) and molecular docking elucidated that SPI-XG formed through hydrogen bonding, hydrophobic, and electrostatic interactions. Three-phase contact angle (θo/w) of SPI-XG approached 90° with biphasic wettability. SPI-XG adsorbed at the oil-water interface to form an interfacial layer with a gel network structure, which prevented droplet aggregation. Following in vitro simulated digestion, Que displayed higher bioaccessibility in SPI-XG stabilized Pickering emulsions (SPI-XG PEs) than SPI stabilized Pickering emulsions. In conclusion, SPI-XG PEs were a promising system for Que delivery.


Subject(s)
Emulsions , Polysaccharides, Bacterial , Quercetin , Soybean Proteins , Emulsions/chemistry , Quercetin/chemistry , Soybean Proteins/chemistry , Polysaccharides, Bacterial/chemistry , Molecular Docking Simulation , Hydrophobic and Hydrophilic Interactions , Emulsifying Agents/chemistry , Particle Size
10.
Exp Mol Med ; 56(8): 1843-1855, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39122845

ABSTRACT

Innate immune activation is critical for initiating hepatic inflammation during nonalcoholic steatohepatitis (NASH) progression. However, the mechanisms by which immunoregulatory molecules recognize lipogenic, fibrotic, and inflammatory signals remain unclear. Here, we show that high-fat diet (HFD)-induced oxidative stress activates Foxo1, YAP, and Notch1 signaling in hepatic macrophages. Macrophage Foxo1 deficiency (Foxo1M-KO) ameliorated hepatic inflammation, steatosis, and fibrosis, with reduced STING, TBK1, and NF-κB activation in HFD-challenged livers. However, Foxo1 and YAP double knockout (Foxo1/YAPM-DKO) or Foxo1 and Notch1 double knockout (Foxo1/Notch1M-DKO) promoted STING function and exacerbated HFD-induced liver injury. Interestingly, Foxo1M-KO strongly reduced TGF-ß1 release from palmitic acid (PA)- and oleic acid (OA)-stimulated Kupffer cells and decreased Col1α1, CCL2, and Timp1 expression but increased MMP1 expression in primary hepatic stellate cells (HSCs) after coculture with Kupffer cells. Notably, PA and OA challenge in Kupffer cells augmented LIMD1 and LATS1 colocalization and interaction, which induced YAP nuclear translocation. Foxo1M-KO activated PGC-1α and increased nuclear YAP activity, modulating mitochondrial biogenesis. Using chromatin immunoprecipitation (ChIP) coupled with massively parallel sequencing (ChIP-Seq) and in situ RNA hybridization, we found that NICD colocalizes with YAP and targets Mb21d1 (cGAS), while YAP functions as a novel coactivator of the NICD, which is crucial for reprogramming STING function in NASH progression. These findings highlight the importance of the macrophage Foxo1-YAP-Notch1 axis as a key molecular regulator that controls lipid metabolism, inflammation, and innate immunity in NASH.


Subject(s)
Disease Progression , Forkhead Box Protein O1 , Immunity, Innate , Non-alcoholic Fatty Liver Disease , Receptor, Notch1 , Signal Transduction , YAP-Signaling Proteins , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/immunology , Forkhead Box Protein O1/metabolism , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , YAP-Signaling Proteins/metabolism , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Knockout , Kupffer Cells/metabolism , Kupffer Cells/immunology , Diet, High-Fat/adverse effects , Macrophages/metabolism , Macrophages/immunology , Male , Disease Models, Animal
11.
J Cancer Res Clin Oncol ; 150(8): 377, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085725

ABSTRACT

BACKGROUND: Hepatoblastoma (HB) is the most common pediatric liver tumor, presenting significant therapeutic challenges due to its high rates of recurrence and metastasis. While Inosine Monophosphate Dehydrogenase 2(IMPDH2) has been associated with cancer progression, its specific role and clinical implications in HB have not been fully elucidated. METHODS: This study utilized Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Tissue Microarray (TMA) for validation. Following this, IMPDH2 was suppressed, and a series of in vitro assays were conducted. Flow cytometry was employed to assess apoptosis and cell cycle arrest. Additionally, the study explored the synergistic therapeutic effects of mycophenolate mofetil (MMF) and doxorubicin (DOX) on HB cell lines. RESULTS: The study identified a marked overexpression of IMPDH2 in HB tissues, which was strongly correlated with reduced Overall Survival (OS) and Event-Free Survival (EFS). IMPDH2 upregulation was also found to be associated with key clinical-pathological features, including pre-chemotherapy alpha-fetoprotein (AFP) levels, presence of preoperative metastasis, and the pre-treatment extent of tumor (PRETEXT) staging system. Knockdown of IMPDH2 significantly inhibited HB cell proliferation and tumorigenicity, inducing cell cycle arrest at the G0/G1 phase. Notably, the combination of MMF, identified as a specific IMPDH2 inhibitor, with DOX, substantially enhanced the therapeutic response. CONCLUSION: The overexpression of IMPDH2 was closely linked to adverse outcomes in HB patients and appeared to accelerate cell cycle progression. These findings suggest that IMPDH2 may serve as a valuable prognostic indicator and a potential therapeutic target for HB. IMPACT: The present study unveiled a significant overexpression of inosine monophosphate dehydrogenase 2 (IMPDH2) in hepatoblastoma (HB) tissues, particularly in association with metastasis and recurrence of the disease. The pronounced upregulation of IMPDH2 was found to be intimately correlated with adverse outcomes in HB patients. This overexpression appears to accelerate the progression of the cell cycle, suggesting that IMPDH2 may serve as a promising candidate for both a prognostic marker and a therapeutic target in the context of HB.


Subject(s)
Apoptosis , Cell Cycle Checkpoints , Cell Proliferation , Hepatoblastoma , IMP Dehydrogenase , Liver Neoplasms , Humans , Hepatoblastoma/pathology , Hepatoblastoma/drug therapy , Hepatoblastoma/metabolism , Hepatoblastoma/genetics , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , IMP Dehydrogenase/antagonists & inhibitors , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Female , Male , Cell Cycle Checkpoints/drug effects , Child, Preschool , Doxorubicin/pharmacology , Child , Mice , Animals , Cell Line, Tumor , Infant , Prognosis , Mice, Nude
12.
Int J Surg ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995162

ABSTRACT

BACKGROUND: The high recurrent rate after liver transplantation (LT) remains a clinical challenge, especially for those exceeding the Milan criteria (MC) and with high RETREAT scores. Therefore, the authors aim to investigate whether neoadjuvant systemic therapy allows safely administered and effectively reduces post-LT recurrence for those patients. METHODS: In this prospective, randomized, open-label, pilot study, patients with HCC exceeding the MC were randomly assigned to PLENTY or control group before LT. The primary endpoint of the study was the recurrence-free survival after LT. RESULTS: Twenty-two patients were enrolled and randomly assigned: 11 to the PLENYT group and 11 to the control group. The 30-month tumor-specific RFS was 37.5% in the PLENTY group and 12.5% in the control group. The 12-month tumor-specific RFS after LT was significantly improved in the PLENTY group (87.5%) compared to the control group (37.5%) (P=0·0022). The objective response rate in the PLENTY group was 30 and 60% when determined by RECIST 1.1 and mRECIST, respectively. Six patients (60%) had significant tumor necrosis, including three (30%) who had complete tumor necrosis at histopathology. No acute allograft rejection after LT occurred in the PLENTY and Control group. CONCLUSION: Neoadjuvant pembrolizumab plus lenvatinib before LT appears to be safe and feasible, associated with significantly better RFS for patients exceeding the MC. Despite the limitations of small sample size, this is the first RCT to evaluate neoadjuvant PD-1 blockade combined with tyrosine kinase inhibitors in LT recipients, the results of this study will inform future research.

13.
World J Oncol ; 15(4): 579-591, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993248

ABSTRACT

Background: Lymph node status is a prominent prognostic factor for intrahepatic cholangiocarcinoma (ICC). However, the prognostic value of performing lymph node dissection (LND) in patients with clinical node-negative ICC remains controversial. The aim of this study was to evaluate the clinical value of LND on long-term outcomes in this subgroup of patients. Methods: We retrospectively analyzed patients who underwent radical liver resection for clinically node-negative ICC from three tertiary hepatobiliary centers. The propensity score matching analysis at 1:1 ratio based on clinicopathological data was conducted between patients with and without LND. Recurrence-free survival (RFS) and overall survival (OS) were compared in the matched cohort. Results: Among 303 patients who underwent radical liver resection for ICC, 48 patients with clinically positive nodes were excluded, and a total of 159 clinically node-negative ICC patients were finally eligible for the study, with 102 in the LND group and 57 in the non-LND group. After propensity score matching, two well-balanced groups of 51 patients each were analyzed. No significant difference of median RFS (12.0 vs. 10.0 months, P = 0.37) and median OS (22.0 vs. 26.0 months, P = 0.47) was observed between the LND and non-LND group. Also, LND was not identified as one of the independent risks for survival. Among 51 patients who received LND, 11 patients were with positive lymph nodes (lymph node metastasis (LNM) (+)) and presented significantly worse outcomes than those with LND (-). On the other hand, postoperative adjuvant therapy was the independent risk factor for both RFS (hazard ratio (HR): 0.623, 95% confidence interval (CI): 0.393 - 0.987, P = 0.044) and OS (HR: 0.585, 95% CI: 0.359 - 0.952, P = 0.031). Furthermore, postoperative adjuvant therapy was associated with prolonged survivals of non-LND patients (P = 0.02 for RFS and P = 0.03 for OS). Conclusions: Based on the data, we found that LND did not significantly improve the prognosis of patients with clinically node-negative ICC. Postoperative adjuvant therapy was associated with prolonged survival of ICC patients, especially in non-LND individuals.

14.
Food Chem ; 458: 140173, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38943955

ABSTRACT

Plasma-activated water (PAW) contains multiple active species that alter the structure of myofibrillar protein (MP) to enhance their gel properties. This work investigated the impact of PAW on the oxidation of cysteine in MP by label-free quantitative proteomics. PAW treatment caused the oxidation of 8241 cysteine sites on 2815 proteins, and structural proteins such as nebulin, myosin XVIIIB, myosin XVIIIA, and myosin heavy chain were susceptible to oxidation by PAW. Bioinformatics analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, subcellular localization, and STRING analysis, indicated that these proteins with differential oxidation sites were mainly derived from the cytoplasm and membrane, and were involved in multiple GO terms and KEGG pathways. This is one of the first reports of the redox proteomic changes induced by PAW treatment, and the results are useful for understanding the possible mechanism of PAW-induced oxidation of MP.


Subject(s)
Ducks , Muscle Proteins , Myofibrils , Oxidation-Reduction , Proteomics , Water , Animals , Muscle Proteins/metabolism , Muscle Proteins/chemistry , Muscle Proteins/genetics , Water/metabolism , Water/chemistry , Myofibrils/chemistry , Myofibrils/metabolism
15.
J Immunother Cancer ; 12(6)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908854

ABSTRACT

BACKGROUND AND AIMS: The immunosuppressive tumor microenvironment (TME) plays an essential role in cancer progression and immunotherapy response. Despite the considerable advancements in cancer immunotherapy, the limited response to immune checkpoint blockade (ICB) therapies in patients with hepatocellular carcinoma (HCC) remains a major challenge for its clinical implications. Here, we investigated the molecular basis of the protein O-fucosyltransferase 1 (POFUT1) that drives HCC immune evasion and explored a potential therapeutic strategy for enhancing ICB efficacy. METHODS: De novo MYC/Trp53-/- liver tumor and the xenograft tumor models were used to evaluate the function of POFUT1 in immune evasion. Biochemical assays were performed to elucidate the underlying mechanism of POFUT1-mediated immune evasion. RESULTS: We identified POFUT1 as a crucial promoter of immune evasion in liver cancer. Notably, POFUT1 promoted HCC progression and inhibited T-cell infiltration in the xenograft tumor and de novo MYC/Trp53-/- mouse liver tumor models. Mechanistically, we demonstrated that POFUT1 stabilized programmed death ligand 1 (PD-L1) protein by preventing tripartite motif containing 21-mediated PD-L1 ubiquitination and degradation independently of its protein-O-fucosyltransferase activity. In addition, we further demonstrated that PD-L1 was required for the tumor-promoting and immune evasion effects of POFUT1 in HCC. Importantly, inhibition of POFUT1 could synergize with anti-programmed death receptor 1 therapy by remodeling TME in the xenograft tumor mouse model. Clinically, POFUT1 high expression displayed a lower response rate and worse clinical outcome to ICB therapies. CONCLUSIONS: Our findings demonstrate that POFUT1 functions as a novel regulator of tumor immune evasion and inhibition of POFUT1 may be a potential therapeutic strategy to enhance the efficacy of immune therapy in HCC.


Subject(s)
B7-H1 Antigen , Fucosyltransferases , Immunotherapy , Liver Neoplasms , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Humans , Mice , Animals , B7-H1 Antigen/metabolism , Immunotherapy/methods , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Tumor Escape , Tumor Microenvironment , Immune Evasion , Cell Line, Tumor
16.
Int J Surg ; 110(9): 5615-5626, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38833360

ABSTRACT

Side-effect of life-long immunosuppressants (IS) administration is a major obstacle for the long-term survival of pediatric liver transplantation (LT) recipients. Immunotolerance is the status that recipients discontinued IS with normal liver function and intrahepatic histology. So far, only a few clinical parameters were identified related with tolerance but failed to accurately discriminate tolerant recipients in clinical practice. Here, the authors aimed to provide a comprehensive view of pre-LT and post-LT risk factors associated with the achievement of tolerance after pediatric LT and established a tolerance predictive nomogram (ITPLT) with high accuracy and specificity. The authors enrolled 2228 pediatric recipients who received LT in Renji Hospital between October 2006 and December 2020. All participants survived over 3 years after transplantation with comprehensive and intact medical history and follow-up data. They were randomly assigned to training and validation cohorts in accordance with a ratio of 1:1. Univariate and multivariable Logistic regression were used to identify clinical factors associated with post-LT immune tolerance and establish a predictive model. The model was further validated in an independent external validation cohort from Tianjin First Central Hospital. Among all participants, 6% recipients successfully tapered IS with intact allograft function. The most common reason for IS discontinuity was pneumonia. Univariate analysis identified 15 clinical factors associated with tolerance achievement, including age at LT, follow-up time, preoperative total bilirubin, creatinine, INR, CYP polymorphism, types of transplantation, massive postoperative ascites, episodes of acute rejection, and the severity of EBV and CMV infection. Using multivariable Logistic regression, the authors established the predictive ITPLT model for post-LT tolerance, which included seven easily accessible clinical factors (age at LT, CYP3A5 genotype, types of transplantation, post-LT massive ascites, preoperative INR, creatinine, and total bilirubin levels). Then, the authors visualized the model using nomogram. The c -statistics for predicting tolerance achievement in the training, internal validation, and external validation cohorts were 0.854, 0.787, and 0.746, respectively. Multiple pre-LT and post-LT clinical factors affected the process of immune remodeling after pediatric LT. The predictive ITPLT model, composed of seven easily accessible clinical factors, could comprehensively reveal the effect of these clinical parameters on immune remodeling and accurately identify tolerant recipients after pediatric LT. The application of ITPLT could facilitate the individualized IS strategy in the future.


Subject(s)
Immune Tolerance , Liver Transplantation , Humans , Child , Immune Tolerance/immunology , Male , Cohort Studies , Female , Child, Preschool , Infant , Adolescent , Graft Rejection/immunology , Graft Rejection/prevention & control
17.
Int J Surg ; 110(9): 5452-5462, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38833358

ABSTRACT

BACKGROUND: Liver transplantation (LT) is the most efficient treatment for pediatric patients with end-stage liver diseases, while bacterial infection is the leading reason for post-transplant mortality. The present study is to explore the outcomes and risk factors of early bacterial infection (within 1 months) after pediatric LT. METHODS: In this prospective cohort study, 1316 pediatric recipients [median (IQR) age: 9.1 (6.3-28.0) months; male: 48.0%; median (IQR) follow-up time: 40.6 (29.1-51.4) months] who received LT from September 2018 to April 2022 were included. Bacterial culture samples such as sputum, abdominal drainage, blood, and so on were collected when recipients were presented with infective symptoms. Kaplan-Meier analysis was applied to estimate the long-term survival rates and logistic regression was used to identify independent risk factors. To explore the role of pretransplant rectal swab culture (RSC) in reducing post-transplant bacterial infection rate, 188 infant LT recipients [median (IQR) age: 6.8 (5.5-8.1) months; male: 50.5%] from May 2022 to September 2023 were included. Log-binomial regression was used to measure the association of pretransplant RSC screening and post-transplant bacterial infection. The 'Expectation Maximization' algorithm was used to impute the missing data. RESULTS: Bacterial infection was the primary cause for early (38.9%) and overall mortality (35.6%) after pediatric LT. Kaplan-Meier analysis revealed inferior 1-year and 5-year survival rates for recipients with post-transplant bacterial infection (92.6 vs. 97.1%, 91.8 vs. 96.4%, respectively; P <0.001). Among all detected bacteria, Staphylococcus spp. (34.3%) and methicillin-resistant coagulase-negative Staphylococci (43.2%) were the dominant species and multidrug resistant organisms, respectively. Multivariable analysis revealed that infant recipients [adjusted odds ratio (aOR) 1.49; 95% CI: 1.01-2.20], male recipients (aOR, 1.43; 95% CI: 1.08-1.89), high graft-to-recipient weight ratio (aOR, 1.64; 95% CI: 1.17-2.30), positive post-transplant RSC (aOR, 1.45; 95% CI: 1.04-2.02) and nasopharyngeal swab culture (aOR 2.46; 95% CI: 1.72-3.52) were independent risk factors for early bacterial infection. Furthermore, RSC screening and antibiotic prophylaxis before transplantation could result in a relatively lower post-transplant infection rate, albeit without statistical significance (adjusted RR, 0.53; 95% CI: 0.25-1.16). CONCLUSION: In this cohort study, post-transplant bacterial infection resulted in an inferior long-term patient survival rate. The five identified independent risk factors for post-transplant bacterial infection could guide the prophylaxis strategy of post-transplant bacterial infection in the future. Additionally, pretransplant RSC might decrease post-transplant bacterial infection rate.


Subject(s)
Bacterial Infections , Liver Transplantation , Postoperative Complications , Humans , Male , Liver Transplantation/adverse effects , Risk Factors , Prospective Studies , Infant , Female , Child, Preschool , Bacterial Infections/microbiology , Bacterial Infections/epidemiology , Bacterial Infections/etiology , Bacterial Infections/prevention & control , Postoperative Complications/microbiology , Postoperative Complications/epidemiology , End Stage Liver Disease/surgery
18.
Int J Biol Macromol ; 274(Pt 2): 133324, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908636

ABSTRACT

The role of facile curcumin dispersion and its hydrophobic complexation onto GLP, in the form of shell (GLPC-E), core (GLPE-C) and with synergy (GLP-ECE), on the protein interfacial and emulsion stabilization was investigated. Turbiscan instability index, microrheological elasticity, viscosity and solid-liquid balance values showed that the O/W emulsion stability was in the order of GLP-E < GLPC-E < GLPE-C < GLP-ECE. GLP-ECE also gave the most reduced D [4, 3] (8.11 ± 0.14 µm) with lowest indexes of flocculation (2.80 ± 0.05 %) and coalescence (2.83 ± 0.10 %) at day 5. Interfacial shear rheology suggested the GLP-curcumin complexation fortified the GLP interfacial gelling and then the efficiency as steric stabilizer, especially of core-shell complexation (14.2 mN/m) that showed the most sufficient in-plane protein interaction against strain. Dilatational elasticity and desorption observation revealed the synergistic curcumin complexation facilitated GLP unfolding and macromolecular association at O/W interface, as was also verified from SEM image and surface hydrophobicity (from 36.23 to 76.04). Overall, this study firstly reported the facile curcumin bi-physic dispersion and GLP complexation in improving the emulsion stabilizing efficiency of the protein by advancing its interfacial stabilization.


Subject(s)
Curcumin , Emulsions , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Animals , Liver , Viscosity , Elasticity
19.
Food Microbiol ; 122: 104563, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839237

ABSTRACT

Thermosonication (UT) prestress treatments combining with varied fermentation patterns has been revealed as an effective method to regulate post-acidification as exerted by Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii), but sono-biochemical controlling mechanisms remain elusive. This study employed physiological and transcriptomic analysis to explore the response mechanism of L. delbrueckii to UT-induced microstress (600 W, 33 kHz, 10 min). UT stress-induced inhibition of acidification of L. delbrueckii during (post)-fermentation was first confirmed, relying on the UT process parameters such as stress exposure duration and UT power. The significantly enhanced membrane permeability in cells treated by 600 W for 10 min than the microbes stressed by 420 W for 20 min suggested the higher dependence of UT-derived stresses on the treatment durations, relative to the ultrasonic powers. In addition, ultrasonication treatment-induced changes in cell membrane integrity enhanced and/or disrupted permeability of L. delbrueckii, resulting in an imbalance in intracellular conditions associated with corresponding alterations in metabolic behaviors and fermentation efficiencies. UT-prestressed inoculum exhibited a 21.46% decrease in the membrane potential during the lag phase compared to untreated samples, with an intracellular pH of 5.68 ± 0.12, attributed to the lower activities of H+-ATPase and lactate dehydrogenase due to UT stress pretreatments. Comparative transcriptomic analysis revealed that UT prestress influenced the genes related to glycolysis, pyruvate metabolism, fatty acid synthesis, and ABC transport. The genes encoding 3-oxoacyl-[acyl-carrier-protein] reductases I, II, and III, CoA carboxylase, lactate dehydrogenase, pyruvate oxidase, glucose-6-phosphate isomerase, and glycerol-3-phosphate dehydrogenase were downregulated, thus identifying the relevance of the UT microstresses-downregulated absorption and utilization of carbohydrates with the attenuated fatty acid production and energy metabolisms. These findings could contribute to provide a better understanding of the inactivated effects on the post-acidification of L. delbrueckii by ultrasonic pretreatments, thus providing theoretical basis for the targeted optimization of acidification inhibition efficiencies for yogurt products during chilled preservation processes.


Subject(s)
Fermentation , Gene Expression Profiling , Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/genetics , Hydrogen-Ion Concentration , Transcriptome , Sonication , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
20.
Food Res Int ; 189: 114534, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876604

ABSTRACT

In order to identify the peptides responsible for bitter defects and to understand the mechanism of bitterness in dry-cured ham, the peptides were identified by LC-MS/MS, and the interaction between bitter peptides and receptor proteins were evaluated by molecular docking and molecular dynamics simulation; the signal transduction mechanism of bitter peptides was investigated using the model of HEK-293T cells by calcium imaging and transcriptomics analysis. The results of LC-MS/MS showed that 11 peptides were identified from the high bitterness fraction of defective ham; peptides PKAPPAK, VTDTTR and YIIEK derived from titin showed the highest bitterness values compared with other peptides. The results of molecular docking showed that lower CDOCKER energy was observed in the interaction between these peptides and hT2R16 in comparison with these receptors of hT2R1, hT2R4, hT2R5, hT2R8 and hT2R14, and the interaction of hT2R16 and peptides was stabilized by hydrophobic interaction and hydrogen bond. The average RMSF values of VTDTTR were higher than that of YIIEK and PKAPPAK, while EC50 values of VTDTTR were lower compared with PKAPPAK and YIIEK. Transcriptomics analysis showed that 529 differentially expressed genes were identified in HEK-293T cells during the stimulating by VTDTTR and were mainly enriched into neuroactive ligand-receptor interaction, MAPK pathway, cAMP pathway and calcium signaling pathway, which were mainly responsible for the bitter signal transduction of VTDTTR. These results could provide evidence for understanding the bitter defects of dry-cured ham and the taste mechanism of bitter peptide.


Subject(s)
Molecular Docking Simulation , Peptides , Taste , Humans , HEK293 Cells , Peptides/chemistry , Peptides/genetics , Animals , Swine , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tandem Mass Spectrometry , Gene Expression Profiling , Transcriptome , Signal Transduction , Pork Meat/analysis , Molecular Dynamics Simulation , Chromatography, Liquid
SELECTION OF CITATIONS
SEARCH DETAIL