Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pharmacol Toxicol ; 23(1): 15, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35227329

ABSTRACT

BACKGROUND: Arsenic metabolism enzymes can affect the toxic effects of arsenic. However, the effects of different genders on the metabolites and metabolic enzymes in liver arsenic metabolism is still unclear. This study analyzed the gender differences of various arsenic metabolites and metabolic enzymes and further explored the effects of gender differences on arsenic metabolism in liver tissues of rats. METHODS: Rats were treated with high/medium/low doses of iAs3+ or iAs5+. Liver pathological changes were observed with electron microscopy. The monomethyl aracid (MMA) and dimethyl aracid (DMA) was determined by high performance liquid chromatography-hydride generation atomic fluorescence spectroscopy. S-adenosylmethionine (SAM), arsenate respiratory reductase (ARR), nicotinamide adenine dinucleotide (NAD), purine nucleoside phosphorylase (PNP), pyruvate kinase (PK), and myeloperoxidase (MPO) SAM, ARR, NAD, PNP, PK, and MPO were determined by enzyme-linked immunoassay. RT-qPCR was used to determine Arsenic (+ 3 oxidation state) methyltransferase (AS3MT). RESULTS: The iAs3+ and iAs5+ at high doses induced pathological changes in the liver, such as increased heterochromatin and lipid droplets. Compared within the same group, MMA and DMA were statistically significant in iAs3 + high, iAs3 + medium and iAs5+ low dose groups (P < 0.05). MMA of male rats in iAs3+ high and medium groups was higher than that of female rats, and the DMA of male rats was lower than that of female rats. As3MT mRNA in the male iAs3+ high group was higher than that of females. Besides, compared between male and female, only in iAS3+ low dose, iAS3+ medium dose, iAS5+ low dose, and iAS5+ medium dose groups, there was significant difference in SAM level (P < 0.05). Compared within the same group, male rats had significantly higher PNP and ARR activities while lower PK activity than female rats (P < 0.05). Between the male and female groups, only the iAS3+ high dose and medium dose group had a statistically significant difference (P < 0.05). The NAD activity of females in iAS3+ high dose group was higher than that of males. CONCLUSION: The gender differences in the arsenic metabolism enzymes may affect the biotransformation of arsenic, which may be one of the important mechanisms of arsenic toxicity of different sexes and different target organs.


Subject(s)
Arsenic , Animals , Arsenic/metabolism , Arsenic/toxicity , Biotransformation , Female , Male , Methyltransferases/genetics , Methyltransferases/metabolism , NAD/metabolism , Rats , Sex Factors
2.
Med Sci Monit ; 25: 9923-9932, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31874112

ABSTRACT

BACKGROUND Arsenic (As) is an environmental contaminant, and As pollution in water and soil is a public health issue worldwide. As exposure is associated with the incidence of many disorders, such as arteriosclerosis, diabetes, neurodegenerative diseases, and renal dysfunction. However, the mechanism of As toxicity remains unclear. MATERIAL AND METHODS We investigated the changes in serum protein profiles of rats chronically exposed to As. Twenty healthy rats were randomly divided into 4 groups, and sodium arsenite of varying final concentrations (0, 2, 10, and 50 mg/L, respectively) was add into the drinking water for each group. The administration lasted for 3 months. Two proteomic strategies, isobaric tags for relative and absolute quantitation (iTRAQ), and 2-dimensional gel electrophoresis (2-DE), were employed to screen the differential serum proteins between control and arsenite exposure groups. RESULTS We identified a total of 27 differentially-expressed proteins, among which 9 proteins were significantly upregulated and 18 were downregulated by As exposure. Many of the differentially-expressed proteins were related to fat digestion and absorption, including 5 apolipoproteins, which indicated lipid metabolism may be the most affected by As exposure. CONCLUSIONS This study revealed the influence of As on lipid metabolism, suggesting an increased potential risk of relevant diseases in subjects chronically exposed to As.


Subject(s)
Arsenic Poisoning/metabolism , Arsenic/toxicity , Animals , Arsenic/blood , Arsenic/metabolism , Arsenic Poisoning/blood , Arsenites/pharmacology , Arsenites/toxicity , Female , Gene Expression Profiling , Lipid Metabolism/drug effects , Male , Proteins , Proteomics/methods , Rats , Rats, Sprague-Dawley , Sodium Compounds/pharmacology , Sodium Compounds/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...