Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 353: 505-513, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29709870

ABSTRACT

This study investigated the formation of toxic iodinated trihalomethanes (I-THMs) during breakpoint chlorination of iodide-containing water. Impact factors including I- concentration, natural organic matter (NOM) concentration and type, pH as well as Br-/I- molar ratio were systematically investigated. Moreover, the incorporation of I- into I-THM formation was also calculated. The results showed that I-THM formation varied in different zones of the breakpoint curves. I-THMs increased with increasing chlorine dosage to breakpoint value and then dropped significantly beyond it. Iodoform (CHI3) and chlorodiiodomethane (CHClI2) were the major I-THMs in the pre-breakpoint zone, while dichloroiodomethane (CHCl2I) was the dominant one in the post-breakpoint zone. The formation of I-THMs increased remarkably with I- and dissolved organic carbon (DOC) concentrations. More bromine-containing species were formed as Br-/I- molar ratio increased from 0.5 to 5. In addition, the major I-THM compound shifted from CHCl2I to the more toxic CHClBrI. As pH increased from 6.0 to 8.0, I-THM formation kept increasing in the pre-breakpoint zone and the speciation of I-THMs changed alongside the breakpoint curves. The incorporation of I- during breakpoint chlorination was highly dependent on chlorine, I-, and NOM concentrations, NOM type, solution pH and Br-/I- molar ratio.

2.
Sci Total Environ ; 615: 38-46, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28963895

ABSTRACT

Acrylamide is a monomer of polyacrylamide, which is widely used in the water treatment process as a flocculant. The degradation kinetics and formation of disinfection by-products (DBPs) during acrylamide chlorination were investigated in this study. The reaction between chlorine and acrylamide followed a pseudo-first-order kinetics. A kinetic model regarding acrylamide chlorination was established and the rate constants of each predominant elementary reaction (i.e., the base-catalyzed reaction of acrylamide with ClO- as well as the reactions of acrylamide with HOCl and ClO-) were calculated as 7.89×107M-2h-1, 7.72×101M-1h-1, and 1.65×103M-1h-1, respectively. The presence of Br- in water led to the formation of HOBr and accelerated the rate of acrylamide degradation by chlorine. The reaction rate constant of acrylamide with HOBr was calculated as 1.33×103M-1h-1. The degradation pathways of acrylamide chlorination were proposed according to the intermediates identified using ultra-performance liquid chromatography and electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Five chlorinated DBPs including chloroform (CF), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), dichloroacetamide (DCAcAm), and trichloroacetamide (TCAcAm) were identified during acrylamide chlorination. The formation of CF, DCAN, DCAcAm, and TCAcAm kept increasing, while that of TCAN increased and then decreased with increasing reaction time. As the chlorine dosage increased from 0.75 to 4.5mM, DCAN became the dominant DBP. Large amounts of CF, DCAN, and TCAN were formed at basic pHs. The hydrolysis of DCAN and TCAN led to the formation of DCAcAm and TCAcAm, respectively. The results of this study elucidated that acrylamide can be a precursor for the formation of haloacetonitriles (HANs) and haloacetamides (HAcAms) during drinking water treatment.

3.
Chemosphere ; 187: 268-276, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28854381

ABSTRACT

The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 109 M-1 s-1. The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated.


Subject(s)
Acrylamide/analysis , Models, Chemical , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Acetamides/chemistry , Acrylamide/chemistry , Chlorine/chemistry , Chloroform/analysis , Disinfection/methods , Halogenation , Hydroxyl Radical , Ions , Kinetics , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Purification/methods
4.
Chemosphere ; 184: 489-497, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28618281

ABSTRACT

The degradation kinetics, pathways and disinfection by-products (DBPs) formation of iopamidol by chlorine and chloramines were investigated in this paper. The chlorination kinetics can be well described by a second-order model. The apparent second-order rate constants of iopamidol chlorination significantly increased with solution pH. The rate constants of iopamidol with HOCl and OCl- were calculated as (1.66 ± 0.09) × 10-3 M-1 s-1 and (0.45± 0.02) M-1 s-1, respectively. However, the chloramination of iopamidol fitted well with third-order kinetics and the maximum of the apparent rate constant occurred at pH 7. It was inferred that the free chlorine (i.e., HOCl and OCl-) can react with iopamidol while the combined chlorine species (i.e., NH2Cl and NHCl2) were not reactive with iopamidol. The main intermediates during chlorination or chloramination of iopamidol were identified using ultra performance liquid chromatography - electrospray ionization-mass spectrometry (UPLC-ESI-MS), and the destruction pathways including stepwise deiodination, hydroxylation as well as chlorination were then proposed. The regular and iodinated DBPs formed during chlorination and chloramination of iopamidol were measured. It was found that iodine conversion from iopamidol to toxic iodinated DBPs distinctly increased during chloramination. The results also indicated that although chloramines were much less reactive than chlorine toward iopamidol, they led to the formation of much more toxic iodinated DBPs, especially CHI3.


Subject(s)
Chloramines/chemistry , Disinfectants/toxicity , Disinfection/methods , Halogenation , Iopamidol/chemistry , Disinfectants/chemistry , Iopamidol/toxicity , Kinetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Purification/methods
5.
Water Res ; 103: 189-196, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27455415

ABSTRACT

Surface water are frequently subjected to problems of algal blooms and release of algae organic matter (AOM) from the algae cells, which cause many water quality issues. This study investigated the formation of organic chloramines and nitrogenous disinfection by-products (N-DBPs) during chlor(am)ination and UV/chlor(am)ination of AOM in drinking water. AOM caused higher organic chloramine formation than humic acid and fulvic acid during chlor(am)ination. The formation of organic chloramines increased first and then decreased with the increase of free chlorine dosage, but kept increasing with the increase of NH2Cl dosage. During AOM chlorination, the formation of organic chloramines kept decreasing as the reaction time went by, and the maximum organic chloramine proportion (79.1%) in total chlorine occurred at 8 h. However, during AOM chloramination, the formation of organic chloramines increased first, decreased in the following and then increased again as the reaction time went by, and the maximum organic chloramine proportion (22.1%) in total chlorine occurred at 24 h. UV irradiation pretreatment did not effectively influence organic chloramine formation during AOM chlor(am)ination, but accelerated the degradation of organic chloramines during chloramination. Besides, UV pretreatment enhanced the formation of N-DBPs during the subsequent chlor(am)ination of AOM, especially dichloroacetonitrile.


Subject(s)
Chloramines , Drinking Water , Disinfection , Halogenation , Water Pollutants, Chemical , Water Purification
6.
Water Res ; 98: 199-205, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27105034

ABSTRACT

Iodinated trihalomethanes (I-THMs) are a group of emerging disinfection by-products with high toxicity, and iodide (I(-)) as well as iodinated organic compounds are expected to be their iodine sources. Nevertheless, in this study, iodate (IO3(-)) was proven to be a new iodine source of I-THM formation during UV/chloramination. In the iodate-containing waters (without any other iodine sources), I-THM formation increased with the increase of UV dose, IO3(-) and NH2Cl concentrations. With the increase of Br(-)/IO3(-) molar ratio, I-THM formation (especially for the brominated species) increased. Besides, NOM species could affect I-THM formation from IO3(-) during UV/chloramination. Fulvic acid could promote IO3(-) phototransformation to I(-) but humic acid impeded the production of I(-) during UV irradiation. Under realistic drinking water treatment conditions (DOC = 5.0 mg-C/L, IO3(-) = 12.7 µg-I/L, UV dose = 50 mJ/cm(2), NH2Cl = 5 mg-Cl2/L), CHCl2I was detected as 0.17 µg/L using solid-phase microextraction method, and the production rate of I-THMs from IO3(-) was about 7% of that from I(-).


Subject(s)
Iodates , Trihalomethanes , Halogenation , Iodides , Iodine , Water Pollutants, Chemical , Water Purification
7.
Chemosphere ; 144: 940-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26432536

ABSTRACT

This study investigated the changes of chlorine species and proportion of organic chloramines during the chlorination process after UV irradiation pretreatment in drinking water. It was found that the UV pretreatment could enhance the percentage of organic chloramines by increasing free chlorine consumption in the chlorination of raw waters. The percentage of organic chloramines in total chlorine increased with UV intensity and irradiation time in raw waters. However, for the humic acid synthesized water, the percentage of organic chloramines increased first and then decreased with the increase of UV irradiation time. The value of SUVA declined in both raw and humic acid synthesized waters over the UV irradiation time, which indicated that the decomposition of aromatic organic matter by UV could be a contributor to the increase of free chlorine consumption and organic chloramine proportion. The percentage of organic chloramines during chlorination of raw waters after 30-min UV irradiation pretreatment varied from 20.2% to 41.8%. Total chlorine decreased obviously with the increase of nitrate concentration, but the percentage of organic chloramines increased and was linearly correlated to nitrate concentration.


Subject(s)
Chloramines/analysis , Chlorine/analysis , Fresh Water/chemistry , Humic Substances/analysis , Ultraviolet Rays , Water Purification/methods , Chloramines/radiation effects , Chlorine/radiation effects , Disinfection , Halogenation , Nitrates/chemistry
8.
Huan Jing Ke Xue ; 36(3): 898-904, 2015 Mar.
Article in Chinese | MEDLINE | ID: mdl-25929056

ABSTRACT

The best enhanced coagulation conditions for the raw water of Danjiangkou Reservoir of South-to-North Water Diversion Project and the molecular weights as well as hydrophobicity composition of Natural organic matter (NOM) in the water were investigated in this study. The results showed that the NOM in the raw water of Danjiangkou Reservoir of South-to-North Water Diversion Project was mainly composed of the fraction with a molecular weight of < 1 000 and transphilic components. Dissolved organic carbon (DOC, 39.98%) and UV254 (39.10%) were the major components. And the fraction with a molecular weight of < 1 000 had the highest contents of THMFP and N-DBPFP. In the raw water of Danjiangkou Reservoir, the sum of transphilic and hydrophobic fractions was up to 80%, and the hydrophobic fraction was the minimum contributor of the NOM, but the THMFP of the hydrophobic fraction had the highest percentage. And when the raw water of Danjiangkou Reservoir was treated using polymeric ferric sulfate (PFS, 4 mg x L(-1)) and poly-acrylamide (PAM, 0.4 mg x L(-1)) , the optimal removal rates of turbidity, DOC, UV254 and THMFP were 76.33%, 25.57%, 37.78% and 23.16%, respectively. The results of this paper can provide theoretical and technological basis for upgrading of the process and operation optimization of original drinking water treatment plants in the intake area of South-to-North Water Diversion Project.


Subject(s)
Organic Chemicals/analysis , Water/chemistry , China , Hydrophobic and Hydrophilic Interactions , Water Purification , Water Supply
9.
Huan Jing Ke Xue ; 36(9): 3278-84, 2015 Sep.
Article in Chinese | MEDLINE | ID: mdl-26717688

ABSTRACT

This study discussed the formation of volatile carbonaceous disinfection by-products (DBPs) and nitrogenous DBPs during chlor(am) ination of Danjingkou Reservoir water which was the source of the Middle Route Project of South-to-North Water Diversion Project. The effects of disinfection methods, disinfectant dosage, reaction time, pH values and bromide ion concentration were investigated. And the disinfection parameters were optimized. Four DBPs, including chloroform (CF), bromodichloromethane (BDCM), dichloroacetonitrile(DCAN) and trichloronitromethane(TCNM), were observed during the chlorination. But only CF and TCNM were detected during the chloramination of water. The disinfection by-product (DBP) concentration from chlorination is 7. 5 times higher than that from chloramination, and the yield of DBPs from short time chlorination then chloramination is in between the first two methods. All kinds of DBPs detected increased with the dosage of increasing chlorine, but the increases slowed down when the dosage was higher than 2 mg . L -1. The formation of CF varied a little as the dosage of chloramine increasing. TCNM was detected when the chloramine dosage was greater than 2 mg . L -1. As reaction time going on, chlorine decayed much faster than chloramine, while DBP formation under chlorination was faster than that of chloramination. THM produced by chlorine increased with the increasing pH, while chloramination showed no obvious changes. As the bromide ion increasing, the species of DBPs transformed from chlorinated DBPs to brominated ones, and the total yield of DBPs increased during both chlorination and chloramination, but the former one was obviously more than that of the latter one. In order to reduce the risk of DBP formation, the chloramination is suggested in the treatment of water from Danjiangkou Reservoir. And if chlorination is applied, the disinfectant dosage should be controlled seriously.


Subject(s)
Disinfectants/analysis , Disinfection/methods , Water Purification , Water/chemistry , Acetonitriles , Chloramines , Chlorine , Chloroform , Halogenation , Hydrocarbons, Chlorinated , Nitrogen , Trihalomethanes
10.
Water Res ; 66: 390-398, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25240119

ABSTRACT

Iodinated trihalomethanes (I-THMs) formation during chlorination and chloramination of five iodinated X-ray contrast media (ICM) compounds (iopamidol, iopromide, iodixanol, histodenz, and diatrizoate) in the presence of natural organic matter (NOM) was evaluated and compared. Chlorination and chloramination of ICM in the absence of NOM yielded only a trace amount of I-THMs, while levels of I-THMs were enhanced substantially in raw water samples. With the presence of NOM, the order with respect to the maximum yield of I-THMs observed during chlorination was iopamidol >> histodenz > iodixanol > diatrizoate > iopromide. During chloramination, I-THM formation was enhanced for hisodenz, iodixanol, diatrizoate, and iopromide. The order with respect to the maximum yield of I-THMs observed during chloramination was iopamidol > diatrizoate > iodixanol > histodenz > iopromide. With the exception of iopamidol, I-THM formation was favored at relatively low chlorine doses (≤100 µM) during ICM chlorination, and significant suppression was observed with high chlorine doses applied (>100 µM). However, during chloramination, increasing monochloramine dose monotonously increased the yield of I-THMs for the five ICM. During chlorination of iodixanol, histodenz, and diatrizoate, the yields of I-THMs exhibited three distinct trends as the pH increased from 5 to 9, while peak I-THM formation was found at circumneutral pH for chloramination. Increasing bromide concentration not only considerably enhanced the yield of I-THMs but also shifted the I-THMs towards bromine-containing ones and increased the formation of higher bromine-incorporated species (e.g., CHBrClI and CHBr2I), especially in chloramination. These results are of particular interest to understand I-THM formation mechanisms during chlorination and chloramination of waters containing ICM.


Subject(s)
Bromine/chemistry , Chloramines/chemistry , Chlorine/chemistry , Contrast Media/chemistry , Iodine/chemistry , Trihalomethanes/chemistry , Water Purification/methods , Bromides/chemistry , China , Disinfectants/chemistry , Disinfection/methods , Halogenation , Hydrogen-Ion Concentration , Organic Chemicals/chemistry , Water/chemistry , Water Pollutants, Chemical , Water Supply , X-Rays
11.
Chemosphere ; 93(11): 2662-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24034831

ABSTRACT

The kinetics of chlorination of dinoseb and the corresponding formation of disinfection by-products (DBPs) were studied between pH 4 and 9 at room temperature (25±1°C). The reactivity shows a minimum at pH 9, a maximum at pH 4 and a medium at neutral conditions. pH profile of the apparent second-order rate constant of the reaction of dinoseb with chlorine was modeled considering the elementary reactions of HOCl with dinoseb species and an acid-catalyzed reaction. The predominant reactions at near neutral pH were the reactions of HOCl with the two species of dinoseb. The rate constants of 2.0 (±0.8)×10(4)M(-2)s(-1), 3.3 (±0.6) and 0.5 (±0.1)M(-1)s(-1) were determined for the acid-catalyzed reaction, HOCl reacted with dinoseb and dinoseb(-), respectively. The main degradation by-products of the dinoseb formed during chlorination have been separated and identified by GC-MS with liquid-liquid extraction sample pretreatment. Six volatile and semi-volatile DBPs were identified in the chlorination products, including chloroform (CF), monochloroacetone, chloropicrin (TCNM), 1,1-dichloro-2-methy-butane, 1,2-dichloro-2-methy-butane, 1-chloro-3-methy-pentanone. A proposed degradation pathway of dinoseb during chlorination was then given. TCNM and CF formation potential during chlorination of dinoseb reached as high as 0.077 and 0.097µMµM(-1) dinoseb under the traditional condition (pH=7 and Cl2/C=2). Their yields varied with Cl2/C, pH and time. The maximum yields of TCNM appeared at molar ratio as Cl2/C=1 and pH 3, while the maximum of CF appeared at molar ratio as Cl2/C=4 and pH 7. [TCNM]/[CF] decreased with reaction time and increased solution pH.


Subject(s)
2,4-Dinitrophenol/analogs & derivatives , Hydrocarbons, Chlorinated/chemistry , Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , 2,4-Dinitrophenol/analysis , 2,4-Dinitrophenol/chemistry , Hydrogen-Ion Concentration , Kinetics , Pesticides/analysis , Water Pollutants, Chemical/analysis
12.
J Hazard Mater ; 241-242: 348-54, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23062513

ABSTRACT

This study shows that iodinated disinfection by-products (I-DBPs) including iodoform (IF), iodoacetic acid (IAA) and triiodoacetic acid (TIAA) can be produced when iodide-containing waters are in contact with potassium permanganate. IF was found as the major I-DBP species during the oxidation. Iodide was oxidized to HOI, I(2) and I(3)(-), consequently, which led to the formation of iodinated organic compounds. I-DBPs varied with reaction time, solution pH, initial concentrations of iodide and potassium permanganate. Yields of IF, IAA and TIAA increased with reaction time and considerable I-DBPs were formed within 12 h. Peak IF yields were found at circumneutral pH range. However, formation of IAA and TIAA was favored under acidic conditions. Molar ratio of iodide to potassium permanganate showed significant influence on formation of IF, IAA and TIAA. The formation of IF, IAA and TIAA also depended on the characteristics of the waters.


Subject(s)
Disinfectants/chemistry , Disinfection/methods , Hydrocarbons, Iodinated/analysis , Potassium Permanganate/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Drinking Water/analysis , Drinking Water/standards , Hydrocarbons, Iodinated/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Water Quality
13.
Sci Total Environ ; 417-418: 241-7, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22273262

ABSTRACT

The degradation of chlortoluron by monochloramination was investigated in the pH range of 4-9. The degradation kinetics can be well described by a second-order kinetic model, first-order in monochloramine (NH(2)Cl) and first-order in chlortoluron. NH(2)Cl was found not to be very reactive with chlortoluron, and the apparent rate constants in the studied conditions were 2.5-66.3M(-1)h(-1). The apparent rate constants were determined to be maximum at pH 6, minimum at pH 4 and medium at alkaline conditions. The main disinfection by-products (DBPs) formed after chlortoluron monochloramination were identified by ultra performance liquid chromatography-ESI-MS and GC-electron capture detector. N-Nitrosodimethylamine (NDMA) and 5 volatile chlorination DBPs including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone and trichloronitromethane were identified. The distributions of DBPs formed at different solution pH were quite distinct. Concentrations of NDMA and CF were high at pH 7-9, where NH(2)Cl was the main disinfectant in the solution. NDMA formation during chlortoluron monochloramination with the presence of nitrogenous salts increased in the order of nitrite

Subject(s)
Chloramines/chemistry , Dimethylnitrosamine/chemistry , Herbicides/chemistry , Phenylurea Compounds/chemistry , Water Pollutants, Chemical/chemistry
14.
Huan Jing Ke Xue ; 32(7): 1967-73, 2011 Jul.
Article in Chinese | MEDLINE | ID: mdl-21922816

ABSTRACT

Twelve typical nitrogenous organic compounds including herbicides, pesticides, amino acids, industrial products etc in polluted raw water were selected to investigate formation of typical carbonaceous and nitrogenous DBPs during chlorination and chloramination. To indentify the formation mechanism of carbonaceous and nitrogenous disinfection byproducts from nitrogenous chemicals, chlorination and chloroamination of urea herbicides, triazine herbicides, amino acid, and other compounds were investigated. As a result, the potential precursors for different DBPs were defined as well. It has been identified that widely used urea herbicides could produce as many as 9 specific DBPs. The chlorotoluron shows highest reactivity and yields chloroform (CF), monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), 1,1-dichloro-acetone (1,1-DCP), 1,1,1-trichloro-acetone (1,1,1-TCP), chloropicrin (NTCM), dichloro-acetonitrile (DCAN), dimethylnitrosamine (NDMA). The results indicated that aldicarb and dinoseb are important precursors of CF, DCAA, MCAA, NTCM as well. High concentrations of CF and DCAA were found during L-tryptophan chlorination. Furthermore, DBPs formation pathways and mechanisms were suggested during chlorination and chloramination of chlorotoluron, ametryn, dinoseb L-tryptophan.


Subject(s)
Chlorine/chemistry , Disinfectants/chemistry , Disinfection/methods , Nitrogen Compounds/analysis , Water Pollutants, Chemical/analysis , Acetates/analysis , Chloroform/analysis , Dichloroacetic Acid/analysis , Halogenation , Water Purification/methods
15.
Chemosphere ; 83(7): 909-16, 2011 May.
Article in English | MEDLINE | ID: mdl-21435681

ABSTRACT

Chlortoluron chlorination is studied in the pH range of 3-10 at 25 ± 1°C. The chlorination kinetics can be well described by a second-order kinetics model, first-order in chlorine and first-order in chlortoluron. The apparent rate constants were determined and found to be minimum at pH 6, maximum at pH 3 and medium at alkaline conditions. The rate constant of each predominant elementary reactions (i.e., the acid-catalyzed reaction of chlortoluron with HOCl, the reaction of chlortoluron with HOCl and the reaction of chlortoluron with OCl(-)) was calculated as 3.12 (± 0.10)×10(7)M(-2)h(-1), 3.11 (±0.39)×10(2)M(-1)h(-1) and 3.06 (±0.47)×10(3)M(-1)h(-1), respectively. The main chlortoluron chlorination by-products were identified by gas chromatography-mass spectrometry (GC-MS) with purge-and-trap pretreatment, ultra-performance liquid chromatography-electrospray ionization-MS and GC-electron capture detector. Six volatile disinfection by-products were identified including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone, dichloronitromethane and trichloronitromethane. Degradation pathways of chlortoluron chlorination were then proposed. High concentrations of CF were generated during chlortoluron chlorination, with maximum CF yield at circumneutral pH range in solution.


Subject(s)
Chloroform/chemical synthesis , Halogenation , Herbicides/chemistry , Phenylurea Compounds/chemistry , Water Pollutants, Chemical/chemistry , Chloroform/analysis , Herbicides/analysis , Hydrogen-Ion Concentration , Kinetics , Phenylurea Compounds/analysis , Water Pollutants, Chemical/analysis , Water Purification
16.
Sci Total Environ ; 409(6): 1116-22, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21211825

ABSTRACT

This paper investigates the characteristics of dissolved organic nitrogen (DON) in raw water from the Huangpu River and also in water undergoing treatment in the full-scale Yangshupu drinking water treatment plant (YDWTP) in Shanghai, China. The average DON concentration of the raw water was 0.34 mg/L, which comprised a relatively small portion (~5%) of the mass of total dissolved nitrogen (TDN). The molecular weight (MW) distribution of dissolved organic matter (DOM) was divided into five groups: >30, 10-30, 3-10, 1-3 and <1 kDa using a series of ultrafiltration membranes. Dissolved organic carbon (DOC), UV absorbance at wavelength of 254 nm (UV254) and DON of each MW fraction were analyzed. DON showed a similar fraction distribution as DOC and UV254. The <1 kDa fraction dominated the composition of DON, DOC and UV254 as well as the major N-nitrosodimethylamine formation potential (NDMAFP) in the raw water. However, this DON fraction cannot be effectively removed in the treatment line at the YDWTP including pre-ozonation, clarification and sand filtration processes. The results from linear regression analysis showed that DON is moderately correlated to DOC, UV254 and trihalomethane formation potential (FP), and strongly correlated to haloacetic acids FP and NDMAFP. Therefore, DON could serve as a surrogate parameter to evaluate the reactivity of DOM and disinfection by-products FP.


Subject(s)
Nitrogen/analysis , Organic Chemicals/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Supply/analysis , Environmental Monitoring , Water Pollution, Chemical/statistics & numerical data , Water Purification
17.
Water Res ; 44(18): 5376-84, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20619437

ABSTRACT

Dissolved organic nitrogen (DON) measurements for water samples with a high dissolved inorganic nitrogen (DIN, including nitrite, nitrate and ammonia) to total dissolved nitrogen (TDN) ratio using traditional methods are inaccurate due to the cumulative analytical errors of independently measured nitrogen species (TDN and DIN). In this study, we present a nanofiltration (NF) pretreatment to increase the accuracy and precision of DON measurements by selectively concentrating DON while passing through DIN species in water samples to reduce the DIN/TDN ratio. Three commercial NF membranes (NF90, NF270 and HL) were tested. The rejection efficiency of finished water from the Yangshupu drinking water treatment plant (YDWTP) is 12%, 31%, 8% of nitrate, 26%, 28%, 23% of ammonia, 77%, 78%, 82% of DOC (dissolved organic carbon), and 83%, 87% 88% of UV(254) for HL, NF90 and NF270, respectively. NF270 showed the best performance due to its high DIN permeability and DON retention (∼80%). NF270 can lower the DIN/TDN ratio from around 1 to less than 0.6 mg N/mg N, and satisfactory DOC recoveries as well as DON measurements in synthetic water samples were obtained using optimized operating parameters. Compared to the available dialysis pretreatment method, the NF pretreatment method shows a similar improved performance for DON measurement for aqueous samples and can save at least 20 h of operating time and a large volume of deionized water, which is beneficial for laboratories involved in DON analysis. DON concentration in the effluent of different treatment processes at the YDWTP and the SDWTP (Shijiuyang DWTP) in China were investigated with and without NF pretreatment; the results showed that DON with NF pretreatment and DOC both gradually decreased after each water treatment process at both treatment plants. The advanced water treatment line, including biological pretreatment, clarification, sand filtration, ozone-BAC processes at the SDWTP showed greater efficiency of DON removal from 0.37 to 0.11 mg N L(-1) than that at the YDWTP, including pre-ozonation, clarification and sand filtration processes from 0.18 to 0.11 mg N L(-1).


Subject(s)
Nanotechnology/methods , Nitrogen/analysis , Organic Chemicals/analysis , Water Purification/methods , Water/chemistry , Carbon , Filtration , Hydrogen-Ion Concentration , Membranes, Artificial , Pressure , Solubility , Solutions , Surface Properties , Taiwan , Water Supply/analysis
18.
Huan Jing Ke Xue ; 31(2): 324-30, 2010 Feb.
Article in Chinese | MEDLINE | ID: mdl-20391697

ABSTRACT

Based on the conventional water treatment processes widely used in China, a pilot scale study was performed to investigate emergent treatment for arsenite pollution in water source. The results show that As removal efficiency can only reach to 71.85% by conventional water treatment process. The removal efficiencies of dissolved arsenic and total arsenic by mixing, first flocculation, second flocculation, sedimentation, filtration units were 36.00%, 5.42%, 9.30%, 14.95%, 7.88% and 9.10%, -3.62%, 2.74%, 55.12%, 8.51% respectively, when the concentration of As(III) in raw water was 150 microg/L. The arsenic concentration in treated water can not be effectively controlled below 10 microg/L. Hence, the pre-oxidation is necessary. The pre-chlorination-enhanced coagulation process can effectively deal with the sudden As(III) pollution. But for lower chlorine dosage, both ammonia concentration and different pre-chlorination sites have significant effects on arsenic removal, which should be taken into account. Potassium permanganate pre-oxidation-enhanced coagulation process can be more effectively deal with the sudden As(III) pollution than pre-chlorination. Moreover the different pre-oxidation sites have no obvious effect on arsenic removal. As a result, potassium permanganate is recommended as an oxidant for As(III).


Subject(s)
Arsenic/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Water Supply/analysis , Arsenic/analysis , Fresh Water , Pilot Projects , Water Pollutants, Chemical/analysis
19.
Huan Jing Ke Xue ; 30(6): 1663-8, 2009 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-19662848

ABSTRACT

The pilot and bench scale studies on pentavalent arsenic removal by coagulation and the strengthening effect of flocs recycling were performed. The results show that above 95% As (V) in the raw water exists in the form of dissolved As (V). Furthermore, the removal efficiencies of dissolved arsenic and total arsenic by mixing, first flocculation, second flocculation, sedimentation, filtration units were 87.92%, 6.18%, 2.38%, 1.55%, 1.23% and 1.10%, 1.83%, 2.20%, 86.42%, 7.38% respectively. Therefore, conversion rate of dissolved As(V) into particulate As(V) and the settlement performance of flocs were strongly dependent on the coagulation effect, which determined the As(V) removal efficiency in the whole system. Flocs have a strong adsorption capacity for As(V) and the adsorption obeys a second order reaction kinetics and well fits the modified Freundlich model. Flocs recycling can obviously promoted the As(V) removal by enhanced coagulation and reduce the dosage of coagulant with recycling point set at rapid mixed site and recycling ratio at 50%.


Subject(s)
Arsenic/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Water Supply/analysis , Adsorption , Flocculation , Pilot Projects , Water Pollutants, Chemical/analysis
20.
J Hazard Mater ; 169(1-3): 586-92, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19423216

ABSTRACT

The chemical oxidation of the herbicide ametryn was investigated by aqueous chlorination between pH 4 and 10 at a temperature of 25 degrees C. Ametryn was found to react very rapidly with aqueous chlorine. The reaction kinetics can be well described by a second-order kinetic model. The apparent second-order rate constants are greater than 5 x 10(2)M(-1)s(-1) under acidic and neutral conditions. The reaction proceeds much more slowly under alkaline conditions. The predominant reactions were found to be the reactions of HOCl with neutral ametryn and the charged ametryn, with rate constants equal to 7.22 x 10(2) and 1.58 x 10(3)M(-1)s(-1), respectively. The ametryn degradation rate increases with addition of bromide and decreases with addition of ammonia during the chlorination process. Based on elementary chemical reactions, a kinetic model of ametryn degradation by chlorination in the presence of bromide or ammonia ion was also developed. By employing this model, we estimate that the rate constants for the reactions of HOBr with neutral ametryn and charged ametryn were 9.07 x 10(3) and 3.54 x 10(6)M(-1)s(-1), respectively. These values are 10- to 10(3)-fold higher than those of HOCl, suggesting that the presence of bromine species during chlorination could significantly accelerate ametryn degradation.


Subject(s)
Chlorine/chemistry , Triazines/chemistry , Bromine , Chemical Phenomena , Herbicides/chemistry , Hydrogen-Ion Concentration , Kinetics , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...