Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(3): 846-852, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37087669

ABSTRACT

Sugarcane is the most important sugar crop. Sugarcane smut is one of the major diseases, which could reduce sugarcane yield and quality and seriously threaten the sustainable and healthy development of sugar industry. Microbial control of sugarcane smut is a rapidly emerging green biocontrol technology, with advantage to increase environmental compatibility and soil fertility. In this review, we briefly described the characteristics of Sporisorium scitamineum which causes sugarcane smut, synthesized the the mechanisms underlying the infection of sugarcane by S. scitamineum, and presented the research status of microbial controls of sugarcane smut via the application of bio-organic fertilizers and biopesticides. We then reviewed the mechanisms underlying the suppression of sugarcane smut by microorganisms through competition with pathogens for nutrients and ecological niches, secreting antagonistic substances, and improving plant resistance. It is notable that there are still some problems in the application of microbial control technologies, including poor colonization ability and unstable biocontrol efficiency. Finally, the major directions of future research on the biocontrol of sugarcane smut were proposed from the perspective of improving the biocontrol efficiency. This review would benefit the microbial control of sugarcane smut and the healthy development of sugar industry.


Subject(s)
Saccharum , Ustilaginales , Saccharum/metabolism , Plant Proteins/genetics , Plant Diseases/prevention & control , Gene Expression Regulation, Plant , Ustilaginales/metabolism , Sugars
2.
J Environ Sci (China) ; 16(3): 367-70, 2004.
Article in English | MEDLINE | ID: mdl-15272704

ABSTRACT

The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle (IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single-channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.


Subject(s)
Waste Disposal, Fluid/methods , Automation , Coloring Agents/isolation & purification , Environment Design , Facility Design and Construction , Industrial Waste , Oxidation-Reduction , Textile Industry , Water Movements , Water Pollutants/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...