Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Meat Sci ; 216: 109574, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38909450

ABSTRACT

The current study aimed to investigate the metabolic and microbial mechanisms behind the effects of dietary wheat levels on intramuscular fat (IMF) content in the psoas major muscle (PM) of finishing pigs. Thirty-six barrows were arbitrarily assigned to two groups and fed with diets containing 25% or 55% wheat. Enhancing dietary wheat levels led to low energy states, resulting in reduced IMF content. This coincided with reduced serum glucose and low-density lipoprotein cholesterol levels. The AMP-activated protein kinase α2/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway may be activated by high-wheat diets, causing downregulation of adipogenesis and lipogenesis genes, and upregulation of lipolysis and gluconeogenesis genes. High-wheat diets decreased relative abundance of Lactobacillus and Coprococcus, whereas increased SMB53 proportion, subsequently decreasing colonic propionate content. Microbial glycolysis/gluconeogenesis, d-glutamine and D-glutamate metabolism, flagellar assembly, and caprolactam degradation were linked to IMF content. Metabolomic analysis indicated that enhancing dietary wheat levels promoted the protein digestion and absorption and affected amino acids and lipid metabolism. Enhancing dietary wheat levels reduced serum glucose and colonic propionate content, coupled with strengthened amino acid metabolism, contributing to the low energy states. Furthermore, alterations in microbial composition and propionate resulted from high-wheat diets were associated with primary bile acid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and biosynthesis of unsaturated fatty acids, as well as IMF content. Colonic microbiota played a role in reducing IMF content through modulating the propionate-mediated peroxisome proliferators-activated receptor signaling pathway. In conclusion, body energy and gut microbiota balance collectively influenced lipid metabolism.

2.
Animals (Basel) ; 14(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38929443

ABSTRACT

The present study aimed to investigate the impacts of dietary standardized ileal digestible lysine to net energy (SID Lys:NE) ratio on lipid metabolism in pigs fed high-wheat diets. Thirty-six crossbred growing barrows (65.20 ± 0.38 kg) were blocked into two treatment groups, fed high-wheat diets with either a high SID Lys:NE ratio (HR) or a low SID Lys:NE ratio (LR). Each treatment group consisted of three replicates, with six pigs per pen in each replicate. The diminishing dietary SID Lys:NE ratio exhibited no adverse impacts on the carcass trait (p > 0.05) but increased the marbling score of the longissimus dorsi muscle (p < 0.05). Meanwhile, LR diets tended to increase the serum triglyceride concentration (p < 0.1). LR diets upregulated fatty acid transport protein 4 and acetyl-coA carboxylase α expression levels and downregulated the expression level of adipose triglyceride lipase (p < 0.05). LR diets improved energy metabolism via decreasing the expression levels of AMP-activated protein kinase (AMPK) α1, sirtuin 1 (SIRT1), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) (p < 0.05). Additionally, LR diets stimulated hepatic bile acid synthesis via upregulating the expression levels of cytochrome P450 family 7 subfamily A member 1 and cytochrome P450 family 27 subfamily A member 1, and downregulating farnesol X receptor (FXR) and small heterodimer partner (SHP) expression levels (p < 0.05). A lowered SID Lys:NE ratio affected the colonic microbial composition, characterized by increased relative abundances of YRC22, Parabacteroides, Sphaerochaeta, and Bacteroides, alongside a decreased in the proportion of Roseburia, f_Lachnospiraceae_g_Clostridium, Enterococcus, Shuttleworthia, Exiguobacterium, Corynebacterium, Subdoligranulum, Sulfurospirillum, and Marinobacter (p < 0.05). The alterations in microbial composition were accompanied by a decrease in colonic butyrate concentration (p < 0.1). The metabolomic analysis revealed that LR diets affected primary bile acid synthesis and AMPK signaling pathway (p < 0.05). And the mantel analysis indicated that Parabacteroides, Sphaerochaeta, f_Lachnospiraceae_g_Clostridium, Shuttleworthia, and Marinobacter contributed to the alterations in body metabolism. A reduced dietary SID Lys:NE ratio improves energy metabolism, stimulates lipogenesis, and inhibits lipolysis in finishing pigs by regulating the AMPKα/SIRT1/PGC-1α pathway and the FXR/SHP pathway. Parabacteroides and Sphaerochaeta benefited bile acids synthesis, whereas f_Lachnospiraceae_g_Clostridium, Shuttleworthia, and Marinobacter may contribute to the activation of the AMPK signaling pathway. Overall, body metabolism and colonic microbiota collectively controlled the lipid metabolism in finishing pigs.

3.
J Org Chem ; 88(21): 15151-15158, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37851408

ABSTRACT

NHC-boranes have been treated as a reliable source of boryl radicals. In this study, regioselective hydroborylation of ketene dithioacetals with NHC-borane was achieved under mild conditions via a visible-light-promoted radical chain process using thiophenol as a proton donor and hydrogen atom transfer. This protocol features a low-cost catalyst, good functional group tolerance, a relatively broad range of substrate scope, and good to excellent yields. Moreover, mechanism of this hydroborylation reaction was preliminarily studied.

4.
RSC Adv ; 13(21): 14501-14505, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37188246

ABSTRACT

Herein we report an N-H functionalization of O-substituted hydroxamic acid with diazo esters under blue LED irradiation conditions. The present transformations could be performed efficiently under mild conditions without use of catalyst, additive and N2 atmosphere. Interestingly, when THF and 1,4-dioxane were employed as the reaction solvents, an active oxonium ylide involved three-component reaction and an N-H insertion of carbene species into hydroxamate occurred, respectively.

5.
Ecotoxicol Environ Saf ; 249: 114350, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508794

ABSTRACT

As a major air pollutant, PM2.5 can induce apoptosis of nerve cells, causing impairment of the learning and memory capabilities of humans and animals. Ferroptosis is a newly discovered way of programmed cell death. It is unclear whether the neurotoxicity induced by PM2.5 is related to the ferroptosis of nerve cells. In this study, we observed the changes in ferroptosis hallmarks of SH-SY5Y cells after exposure to various doses (40, 80, and 160 µg/mL PM2.5) for 24 h, exposure to 40 µg/mL PM2.5 for various times (24, 48, and 72 h), as well as exposure to various components (Po, organic extracts; Pw, water-soluble extracts; Pc, carbon core component). The results showed that PM2.5 reduced the cell viability, the content of GSH, and the activity of GSH-PX and SOD in SH-SY5Y cells with exposure dose and duration increasing. On the other hand, PM2.5 increased the content of iron, MDA, and the level of lipid ROS in SH-SY5Y cells with exposure dose and duration increasing. Additionally, PM2.5 reduced the expression levels of HO-1, NRF2, SLC7A11, and GPX4. The ferroptosis inhibitors Fer-1 and DFO significantly increase the cells viabilities and significantly reversed the changes of other above ferroptosis hallmarks. We also observed the different effects on ferroptosis hallmarks in the SH-SY5Y cells exposed to PM2.5 (160 µg/mL) and its various components (organic extracts, water-soluble extracts, and carbon core) for 24 h. We found that only the organic extracts shared similar results with PM2.5 (160 µg/mL). This study demonstrated that PM2.5 induced ferroptosis of SH-SY5Y cells, and organic extracts might be the primary component that caused ferroptosis.


Subject(s)
Ferroptosis , Particulate Matter , Animals , Humans , Cell Line, Tumor , Ferroptosis/drug effects , Iron/toxicity , Particulate Matter/toxicity , Reactive Oxygen Species/metabolism
6.
Toxicol Lett ; 369: 25-33, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36007723

ABSTRACT

Studies have shown that PM2.5 exposure can induce neuronal apoptosis and neurobehavioral changes in animal experiments due partly to the mitochondria-mediated oxidative damage. How does it affect the mitochondrial energy metabolism as well as the neuronal damage, however, remain unclear. This study aimed to investigate the molecular processes of energy metabolism and oxidative damage induced by ambient PM2.5 exposure in SH-SY5Y cells. SH-SY5Y cells were treated with PM2.5 to establish a cytotoxicity model. A Seahorse Extracellular Flux Analyzer (XFp) was performed to evaluate the cellular mitochondrial respiratory and glycolysis after exposure to PM2.5. The dose- and time-dependent effects of PM2.5 on oxidative damage and apoptosis were analyzed. To further explore the relationship among oxidative damage, energy metabolism and apoptosis, SH-SY5Y cells were co-cultured with BHA and PM2.5 for 24 h. The results demonstrated that the basic respiration and ATP production, the typical index of mitochondrial respiration as well as glycolysis, significantly reduced in SH-SY5Y cells with dose and time dependent. At the same time, the PM2.5 could significantly decrease the cell viability and Mn-SOD activity, and increase the ROS levels and apoptosis rate as the escalation of dose and the extension of time. Importantly, the application of BHA could synchronously recover the PM2.5 induced cell energy metabolism disorder, oxidative damage, and apoptosis. It seems that the abnormal cellular energy metabolism may be caused by oxidative damage following fine particles exposure, and further led to apoptosis.


Subject(s)
Air Pollution , Neuroblastoma , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Butylated Hydroxyanisole , Cell Line, Tumor , Energy Metabolism , Humans , Oxidative Stress , Particulate Matter/toxicity , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
7.
Chem Commun (Camb) ; 58(60): 8380-8383, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35792097

ABSTRACT

A photo-induced transition-metal-free regioselective hydroborylation of α,ß-unsaturated carbonyl compounds is developed. The PhSSPh reagent was employed as the photocatalyst, and NHC-BH3 was used as the boron source. This transformation shows a broad substrate scope and provides a wide range of α-borylcarbonyl molecules in good to excellent yields.

8.
Org Biomol Chem ; 20(21): 4293-4297, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35575057

ABSTRACT

Herein we disclose a facile route to spirocyclic oxazole derivatives via [3 + 2] cycloaddition reactions between 2-arylidene cycloalkanones and azaoxyallyl cations that formed in situ from α-halohydroxamates in the presence of base. This methodology was shown to lead to an efficient formation of a series of functionalized spirocyclic oxazole derivatives in good to excellent yields.


Subject(s)
Oxazoles , Cations , Cycloaddition Reaction
9.
Colloids Surf B Biointerfaces ; 213: 112425, 2022 May.
Article in English | MEDLINE | ID: mdl-35231687

ABSTRACT

Antibiotics, being critical antimicrobial agents, have been widely used for treating bacterial infections. However, prolonged use of antibiotics can induce drug resistance resulting in "superbug" that threatens human health. Therefore, developing antibiotic-free materials with intrinsic antibacterial properties is the key to the "superbug" challenge. In this study, two highly efficient metal-organic frameworks (MOFs) were successfully assembled through synergistic use of the antibacterial properties of reactive organic radicals and silver (Ag) cations. These hybrid Ag-based materials possessed radical-doped characteristics, continuously releasing Ag+, which significantly inhibited the growth of four common Gram-negative and Gram-positive human pathogens (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus), and particularly two multi-drug-resistance bacteria (MRSA and MDR-PA). Furthermore, in vivo assays indicated that the synergistic antibacterial effect of these compounds could significantly accelerate the healing rate of infected wounds in mice. Blood biochemistry and histological analyses of main organs in treated mice also exhibited negligible cytotoxicity. This study unveiled the promising potential of Ag-MOFs for anti-infective therapies and future clinical applications.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Staphylococcal Infections , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Microbial Sensitivity Tests , Silver/chemistry , Silver/pharmacology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...