Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 40(10): 312, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39198372

ABSTRACT

Microbes within a consortium exhibit a synergistic interaction, enhancing their collective capacity to perform functions more effectively than a single species, especially in the degradation of keratin-rich substrates. To achieve a more stable and efficient breakdown of chicken feathers, a comprehensive screening of over 9,000 microbial strains was undertaken. This meticulous selection process identified strains with the capability to degrade keratin effectively. Subsequently, antagonistic tests were conducted to isolate strains of fungi and bacteria that were non-antagonistic, which were then used to form the artificial microbial consortia. The optimal fermentation conditions for the keratinophilic microbial consortia were determined through the optimization of response surface methodology. The results revealed that 11 microbial strains-comprising of 4 fungi and 7 bacteria-were particularly proficient in degrading chicken feathers. The artificially constructed microbial consortia (AMC) comprised two bacterial strains and one fungal strain. The optimal conditions for feathers degradation were identified as a 10 g/L concentration of chicken feathers, a 2.6% microbial inoculation volume and a fermentation fluid pH of 9. Under these conditions, the degradation rate for chicken feathers reached a significant 74.02%, representing an 11.45% increase over the pre-optimization rate. The AMC developed in this study demonstrates the potential for efficient and economical process of livestock and poultry feathers. It provides innovative insights and a theoretical foundation for tackling the challenging degradation of keratin-rich materials. Furthermore, this research lays the groundwork for the separation and purification of keratins, as well as the development of novel proteases, which could have profound implications for a range of applications.


Subject(s)
Bacteria , Chickens , Feathers , Fermentation , Fungi , Keratins , Microbial Consortia , Feathers/microbiology , Feathers/metabolism , Animals , Chickens/microbiology , Keratins/metabolism , Fungi/metabolism , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Hydrogen-Ion Concentration , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL