Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Glob Med Genet ; 11(2): 175-186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873557

ABSTRACT

Background Anaplastic lymphoma kinase ( ALK ) fusion events account for 3 to 7% of genetic alterations in patients with nonsmall cell lung cancer (NSCLC). This study aimed to explore the landscape of ALK fusion-positive and ALK fusion-negative in a large cohort of NSCLC patients. Methods The formalin-fixed paraffin-embedded specimens of NSCLC patients who underwent next-generation sequencing from 2020 to 2023 in Yinfeng Gene Technology Co., Ltd. Clinical laboratory were included in this study. Results In the current study, a total of 180 (3.20%) patients tested positive for ALK fusions in 5,622 NSCLC samples. Within the ALK -positive cohort, a total of 228 ALK fusions were identified. Furthermore, five novel ALK fusion partners, including DAB1-ALK , KCMF1-ALK , KIF13A-ALK , LOC643770-ALK , and XDH-ALK were identified. In cases with ALK fusion-positive, TP53 alterations were the most prevalent (26.3%), followed by CDKN2A (8.4%), epidermal growth factor receptor ( EGFR , 5.6%), and ALK (5.6%). By contrast, EGFR alterations were most prevalent (51%) in patients with ALK fusion-negative NSCLC, followed by TP53 (42.7%), KRAS (11.6%), and CDKN2A (11.3%). A total of 10 cases where ALK fusion co-occurred with EGFR mutations were also identified. Notably, the ALK fusion positivity rate was higher in younger patients ( p < 0.0001) and in female patients ( p = 0.0429). Additionally, positive ALK test results were more prevalent in patients with high programmed death-ligand 1 expression, especially when applying a 50% cutoff. Conclusions Collectively, these findings offer valuable genomic insights that could inform the personalized clinical care of patients with NSCLC harboring ALK fusions within the context of precision medicine.

2.
Opt Express ; 32(11): 19019-19033, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859046

ABSTRACT

In order to guarantee the information of the W-band wireless communication system from the physical layer, this paper proposes the sliced chaotic encrypted (SCE) transmission scheme based on key masked distribution (KMD). The scheme improves the security of free space communication in the W-band millimeter-wave wireless data transmission system. In this scheme, the key information is embedded into the random position of the ciphertext information, and then the ciphertext carrying the key information is encrypted by multi-dimensional chaos. Chaotic system 1 constructs a three-dimensional discrete chaotic map for implementing KMD. Chaotic system 2 constructs complex nonlinear dynamic behavior through the coupling of two neurons, and the masking factor generated is used to realize SCE. In this paper, the transmission of 16QAM signals in a 4.5 m W-band millimeter-wave wireless communication system with a rate of 40 Gb/s is proved by experiments, and the performance of the system is analyzed. When the input optical power is 5 dBm, the bit error rate (BER) of the legitimate encrypted receiver is 1.23 × 10-3. When the offset of chaotic sequence x and chaotic sequence y is 100, their BERs are more than 0.21. The key space of the chaotic system reaches 10192, which can effectively prevent illegal attacks and improve the security performance of the system. The experimental results show that the scheme can effectively distribute the keys and improve the security of the system. It has great application potential in the future of W-band millimeter-wave wireless secure communication.

3.
Langmuir ; 40(4): 2396-2404, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38237152

ABSTRACT

The rate performance of lithium iron phosphate (LiFePO4) is mainly limited by its poor electronic conductivity and slow Li-ion diffusion rate. Graphene-based materials are often compounded with LiFePO4 (LFP) to improve their rate performance, mainly because of their excellent electrical conductivity. Unlike most past composite work focusing on the conductive network between LFP and graphene, in this work, we further developed the functionality of graphene-based materials as nanoparticle carriers, where the nitrogen-doping strategy endows graphene with properties that make it an efficient structural regulation platform during the solvothermal process. Compared to reduced graphene oxide, not only does the nitrogen-doped sites confer more nucleation growth sites for LFP on the graphene surface during the solvothermal process, but also the localized formation of an EG-enriched microenvironment helps to further inhibit the in situ growth of LFP along [010]. The efficient structural regulation platform assisted the synthesis of (010)-oriented LFP with a smaller particle size, which further shortens the Li-ion diffusion paths. The optimized LFP composite electrode materials exhibit a discharge-specific capacity of 133.1 mA·h/g at 10C, which exceeds/is comparable to that of previously reported LFP compounded with graphene-based materials. This work broadens the functionality of graphene-based carriers and provides new ideas for the controllable synthesis of nanoparticles.

4.
Opt Lett ; 48(17): 4548, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656550

ABSTRACT

This publisher's note contains corrections to Opt. Lett.48, 4101 (2023)10.1364/OL.493540.

5.
Opt Express ; 31(19): 30130-30145, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710562

ABSTRACT

This paper proposes a three-dimensional power sparse code division non-orthogonal multiple access (3D-PSCD-NOMA) scheme with 3D constellation pair mapping. The proposed sparse code is based on a balanced incomplete block design (BIBD). Its correlation matrix performs the overall signal mapping of multi-user information. Power multiplexing is realized by overlaying multi-level power signals with different path losses through pair mapping. Compared with the conventional 2D standard square 32 Quadrature Amplitude Modulation (QAM), the proposed 3D constellation pair mapping can improve the constellation points' minimum Euclidean distance (MED) by 17.7%, which is beneficial for the performance of the system. Based on obtaining the optimal power distribution ratio (PDR) for different schemes, a 3D-PSCD-NOMA signal with a rate of 15.22 Gb/s over a 25 km single-mode fiber (SMF) is experimentally performed. The experimental results show that 3D-PSCD-NOMA has a clear superiority. At the same rate, 3D-PSCD-NOMA2 can obtain a sensitivity gain of about 1.6 dB and 1.9 dB over the conventional 2D constellation. Moreover, 3D-PSCD-NOMA reduces the system's peak-to-average power ratio (PAPR) by 1.3 dB. The difference in sensitivity of the system before and after sparse code is about 0.15 dB, and no significant degradation occurred. Due to its advantages in transmission performance, 3D-PSCD-NOMA is a potential solution for future optical access systems.

6.
Opt Express ; 31(17): 27711-27722, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710840

ABSTRACT

In this paper, we propose a multi-dimensional multiplexing scheme for space division multiplexing optical transmission systems based on quaternion chaotic encryption. A constellation compression shaping mapping method is designed to replace the traditional 2n mapping scheme, which leads to flexible encoding modulation. In order to achieve orthogonality between data symbols and effectively suppress crosstalk, the spectrally superposed transmission of three-dimensional (3D) constellation data is carried out by code division multiplexing and 4D carrier-less amplitude phase joint modulation techniques based on orthogonal basis. The Chen's chaotic model is utilized to generate the rotation angle of the constellation points, which enables data encryption without changing the transmitted power, enhancing system's security. The feasibility and superiority of the proposed scheme are successfully verified by constructing an experimental platform for a seven-core fiber transmission system.

7.
Opt Lett ; 48(15): 4101-4104, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37527128

ABSTRACT

This study aims to present a non-orthogonal multiple access (NOMA) security scheme based on constellation camouflage and selective mapping. To improve the security of the system, we use a four-dimensional chaos model to camouflage high-power signals at the transmitter. The constellation diagram of high power is disguised from binary phase-shift keying (BPSK) form to quadrature phase-shift keying (QPSK) form, and after power multiplexing, further camouflaged from 8 points to 16 points. To improve the transmission performance of the designed system as much as possible and not increase the computational complexity, we use the selective mapping method in the process of power multiplexing and use the region decision method for demodulation at the receiving end. The proposed scheme is verified by experiments on a 2-km 7-core optical fiber, and achieves the safety transmission of a power division multiplexing-orthogonal frequency-division multiplexing (PDM-OFDM) signal with a net rate of 97.38 Gb/s without signal damage. The maximum achievable key space of the proposed scheme is 10135. Hence, it is a feasible and secure non-orthogonal multiple access-passive optical network scheme.

8.
Opt Lett ; 48(16): 4205-4208, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37581993

ABSTRACT

In this Letter, we propose a highly secure three-dimensional orthogonal frequency division multiplexing (3D-OFDM) transmission scheme based on two-level noise masking key-accompanying transmission. The original signal is encrypted with a spherical constellation to ensure the system's security with a 4D Lorenz-like model. The key realizes two-level noise masking by introducing additional noise bits at the bit level and hiding in a noise-like spherical shell at the constellation level. Moreover, the proposed method of placing the key in the encrypted signal can simultaneously transmit the encrypted signal and the key. A 101.06-Gb/s 3D-OFDM encrypted signal with the proposed scheme over a 2-km 7-core fiber experiment was successfully implemented. Experimental results show that the security performance of the system can be guaranteed under the conditions of partial key leakage and key misplacement at the illegal receiver. At the same time, the key masking degree (KMD) of the proposed two-level noise masking can reach 3267, which effectively guarantees the safe transmission of the key.

9.
Opt Express ; 31(5): 7425-7439, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859873

ABSTRACT

In this paper, we propose a performance improvement of non-orthogonal multiple access (NOMA) with a three-dimensional (3D) constellation and a two-dimensional Inverse Fast Fourier Transform IFFT modulator (2D-IFFT) for the passive optical network (PON). Two kinds of 3D constellation mapping are designed for the generation of a three-dimensional NOMA (3D-NOMA) signal. Higher-order 3D modulation signals can be obtained by superimposing signals of different power levels by pair mapping. Successive interference cancellation (SIC) algorithm is implemented at the receiver to remove interference from different users. Compared with the traditional two-dimensional NOMA (2D-NOMA), the proposed 3D-NOMA can increase the minimum Euclidean distance (MED) of constellation points by 15.48%, which enhances the bit error rate (BER) performance of the NOMA. The peak-to-average power ratio (PAPR) of NOMA can be reduced by 2 dB. A 12.17 Gb/s 3D-NOMA transmission over 25 km single-mode fiber (SMF) is experimentally demonstrated. The results show that at the bit error rate (BER) of 3.8 × 10-3, the sensitivity gain of the high-power signals of the two proposed 3D-NOMA schemes is 0.7 dB and 1 dB compared with that of 2D-NOMA under the condition of the same rate. Low-power level signal also has 0.3 dB and 1 dB performance improvement. Compared with 3D orthogonal frequency-division multiplexing (3D-OFDM), the proposed 3D-NOMA scheme could potentially expand the number of users without obvious performance degradation. Due to its good performance, 3D-NOMA is a potential method for future optical access systems.

10.
Opt Express ; 31(4): 6659-6674, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823917

ABSTRACT

This paper proposes a 3-dimensional (3D) carrier-less amplitude and phase modulation (CAP) based on a pyramid constellation design encryption scheme for 7-core fiber in passive optical network (PON). The chaos sequences generated by the 4D hyperchaotic system are applied to produce the masking factor, and the pyramid Rubik's cube rotation rules are used to flip and rotate the constellation points. To verify the performance of the proposed 3D CAP-PON system, 25.5Gb/s encrypted Pyraminx-3D-CAP-16 signal transmission over 2 km 7-core fiber is experimentally demonstrated. Compared with the traditional 3D-CAP-16 signal, the proposed Pyraminx-3D-CAP-16 signal achieves a sensitivity gain of 0.5 dB under the limit of hard decision forward error correction (HD-FEC) 3.8 × 10-3. Compared with the Pyraminx-3D-CAP-16 signal, the encrypted Pyraminx-3D-CAP-16 signal has little difference from that before encryption, which has a great application prospect in the physical layer security enhancement of the 3D-CAP-PON system.

11.
BMC Neurosci ; 21(1): 2, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941443

ABSTRACT

BACKGROUND: Aged rhesus monkeys exhibit deficits in memory mediated by the hippocampus. Although extensive research has been carried out on the characteristics of human hippocampal aging, there is still very little scientific understanding of the changes associated with hippocampal aging in rhesus monkeys. To explore the proteomics profiling and pathway-related changes in the rhesus hippocampus during the aging process, we conducted a high throughput quantitative proteomics analysis of hippocampal samples from two groups of rhesus macaques aged 6 years and 20 years, using 2-plex tandem mass tag (TMT) labeling. In addition, we used a comprehensive bioinformatics analysis approach to investigate the enriched signaling pathways of differentially expressed proteins (the ratios of 20-years vs. 6-years, ≥ 1.20 or ≤ 0.83). RESULTS: In total, 3260 proteins were identified with a high level of confidence in rhesus hippocampus. We found 367 differentially expressed proteins related to rhesus hippocampus aging. Based on biological pathway analysis, we found these aging-related proteins were predominantly enriched in the electron transport chain, NRF2 pathway, focal adhesion-PI3K-AKT-mTOR signaling pathway and cytoplasmic ribosome proteins. Data are available via ProteomeXchange with identifier PXD011398. CONCLUSION: This study provides a detail description of the proteomics profile related to rhesus hippocampal aging. These findings should make an important contribution to further mechanistic studies, marker selection and drug development for the prevention and treatment of aging or age-related neurodegeneration.


Subject(s)
Aging/metabolism , Hippocampus/metabolism , Proteome/metabolism , Animals , Computational Biology , Female , Gene Expression Profiling , Macaca mulatta , Male , Proteomics , Signal Transduction
12.
J Neurol Sci ; 399: 125-139, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30798110

ABSTRACT

As an inhibitor of the immune system and a longevity drug, rapamycin has been suggested as a treatment for Alzheimer's disease, although the underlying mechanisms remain to be clarified. To elucidate the mechanisms, we performed a high-throughput quantitative proteomics analysis and bioinformatics analysis of the changes in the proteome profiles of hippocampus and temporal lobe of wild-type mice, APP/PS1 mice and rapamycin-treated APP/PS1 mice (ProteomeXchange: PXD009540). Morris Water Maze tests were used to evaluate the effectiveness of rapamycin in APP/PS1 treatment and Western blot analysis was used to verify the proteomics data. The results of Morris Water Maze tests indicated that rapamycin improved the spatial learning and memory abilities of APP/PS1 mice. Proteome analysis identified 100 significantly changed (SC) proteins in hippocampus and 260 in temporal lobe in APP/PS1 mice. Among these, 57 proteins in hippocampus and 167 proteins in temporal lobe were rescued by rapamycin. STRING analysis indicated relatively more complicated protein interactions of AD-related rapamycin rescued proteins in temporal lobe. Pathway analysis showed that SC proteins in APP/PS1 mice were mainly enriched in cholesterol biosynthesis pathway and cytoplasmic ribosomal proteins. After rapamycin treatment, the expression of most proteins in these signaling pathways were reversed. Overall, our findings demonstrate that rapamycin may be an potential strategy which can effectively delays the progression of AD.


Subject(s)
Cholesterol/biosynthesis , Hippocampus/drug effects , Immunosuppressive Agents/pharmacology , Maze Learning/drug effects , Ribosomal Proteins/metabolism , Sirolimus/pharmacology , Temporal Lobe/drug effects , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Hippocampus/metabolism , Mice , Mice, Transgenic , Presenilin-1/genetics , Signal Transduction/drug effects , Temporal Lobe/metabolism
13.
Endocr Relat Cancer ; 25(10): 879-891, 2018 10.
Article in English | MEDLINE | ID: mdl-29895528

ABSTRACT

Lymph node metastasis (LNM) in papillary thyroid cancer (PTC) is related to increased risk of recurrence and poor prognosis. Tumour exosomes have been shown to be associated with metastasis of cancer cells. Therefore, we aim to identify the characteristics and biological functions of serum exosomes in lymph node metastases of PTC. We compared proteome profiles of serum-purified exosomes (SPEs) from PTC patients with LNM, PTC patients without LNM, and healthy donors, using a combination of liquid chromatography-tandem mass spectroscopy analyses and tandem mass tag label quantitation analysis. We identified 1569 proteins by two or more unique peptides. Compared with the SPEs of PTC patients without LNM, we found 697 differentially expressed proteins in the SPEs of PTC patients with LNM. Our results revealed overexpression of specific proteins with well-established links to cancer cell metastasis, such as SRC, TLN1, ITGB2 and CAPNS1. Consistent with mass spectrum results, we performed Western blot to detect the expression of these proteins in individual sample. Biological pathway analyses showed that integrin signalling was aberrantly activated in the SPEs of PTC patients with LNM compared to those without LNM. Our study reveals that SPEs of PTC patients with lymph node metastases promote BHT101 thyroid cancer cell invasiveness, but have no apparent influence on cell migration. In the serum exosomes of PTC patients with LNM, integrin-associated proteins are obviously upregulated. These proteomic findings will contribute to elucidation of the pathophysiological functions of tumour-derived exosomes.


Subject(s)
Exosomes/metabolism , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Female , Humans , Male , Middle Aged , Prognosis , Proteomics , Retrospective Studies , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...