Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 375-382, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645842

ABSTRACT

Objective: Some colorectal cancer patients still face high recurrence rates and poor prognoses even after they have undergone the surgical treatment of radical resection. Identifying potential biochemical markers and therapeutic targets for the prognostic evaluation of patients undergoing radical resection of colorectal cancer is crucial for improving their clinical outcomes. Recently, it has been reported that the T cell immunoglobulin and mucin domain protein 3 (Tim-3) and its ligand galactose lectin 9 (galectin-9) play crucial roles in immune dysfunction caused by various tumors, such as colorectal cancer. However, their expressions, biological functions, and prognostic value in colorectal cancer are still unclear. This study aims to investigate the relationship between Tim-3 and galectin-9 expression levels and the clinicopathological characteristics and prognosis of patients undergoing radical resection of colorectal cancer. Methods: A total of 171 patients who underwent radical resection of colorectal cancer at Chengdu Fifth People's Hospital between February 2018 and March 2019 were selected. Immunohistochemistry was performed to assess the expression levels of Tim-3 and galectin-9 in the cancer tissue samples and the paracancerous tissue samples of the patients. The relationship between Tim-3 and galectin-9 expression levels and the baseline clinical parameters of the patients was analyzed accordingly. Kaplan-Meier analysis was performed to assess the association between Tim-3 and galectin-9 expression levels and the relapse-free survival (RFS) and the overall survival (OS) of colorectal cancer patients. Cox regression analysis was conducted to identify factors associated with adverse prognosis in the patients. Results: The immunohistochemical results showed that the high expression levels of Tim-3 and galectin-9 were observed in 70.18% (120/171) and 32.16% (55/171), respectively, of the colorectal cancer tissues, whereas the low expression levels were 29.82% (51/171) and 67.84% (116/171), respectively. Furthermore, the expression score of Tim-3 was significantly higher in colorectal cancer tissues than that in the paracancerous tissues, while the expression score of galectin-9 was lower than that in the paracancerous tissues (P<0.05). Further analysis revealed that the expression of Tim-3 and galectin-9 was associated with the depth of tumor infiltration, vascular infiltration, and clinical staging (P<0.05). During the follow-up period of 14-63 months, 7 out of 171 patients were lost to follow-up. Among the remaining patients, 49 and 112 cases presented abnormally low expression of Tim-3 and galectin-9, respectively, whereas 115 and 52 cases presented high expression of Tim-3 and galectin-9, respectively. Kaplan-Meier survival analysis demonstrated that patients with high Tim-3 expression in colorectal cancer tissues had significantly lower RFS and OS than those with low expression did (RFS: log-rank=22.66, P<0.001; OS: log-rank=19.71, P<0.001). Conversely, patients with low galectin-9 expression had significantly lower RFS and OS than those with high expression did (RFS: log-rank=19.45, P<0.001; OS: log-rank=22.24, P<0.001). Cox multivariate analysis indicated that TNM stage Ⅲ (HR=2.26, 95% CI: 1.20-5.68), high expression of Tim-3 (HR=0.80, 95% CI: 0.33-0.91), and low expression of galectin-9 (HR=1.80, 95% CI: 1.33-4.70) were independent risk factors affecting RFS and OS in patients (P<0.05). Conclusion: Aberrant expression of Tim-3 and galectin-9 is observed in colorectal cancer tissues. High expression of Tim-3 and low expression of galectin-9 are closely associated with adverse clinico-pathological characteristics and prognosis. They are identified as independent influencing factors that may trigger adverse prognostic events in patients. These findings suggest that Tim-3 and galectin-9 have potential as new therapeutic targets and clinical indicators.


Subject(s)
Colorectal Neoplasms , Galectins , Hepatitis A Virus Cellular Receptor 2 , Humans , Galectins/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Prognosis , Male , Female , Middle Aged , Neoplasm Recurrence, Local/metabolism , Biomarkers, Tumor/metabolism , Aged
2.
Front Mol Biosci ; 9: 866408, 2022.
Article in English | MEDLINE | ID: mdl-35755820

ABSTRACT

Background: Endothelial-to-mesenchymal transition (EndMT) is poorly understood in digestive diseases, and the function of metabolism in EndMT is uncertain. Objective: The goal of this study is to elucidate the role of EndMT in digestive diseases and to describe its metabolic state. Method: The GEO database was used to extract single-cell data in order to discover EndMT subpopulations in digestive organs such as premalignant lesions and cancer of the stomach, intestine, and pancreas. Results: By single-cell RNA sequencing in digestive diseases, we generated a single-cell atlas from tissues of patients spanning a cascade of premalignant lesions and cancer. We next established a single-cell network elucidating the cellular and molecular characteristics of endothelial cells (ECs) across many lesions and identified key genes linked with EndMT in premalignant lesions and cancer lesions. The EndMT activation of a wide variety of metabolic signaling pathways was discovered in ECs, and further study of premalignant lesions and cancer tissue indicated that glucose metabolism increased in premalignant lesions and reached a maximum in cancer tissue. Finally, it was shown that INSR and LDHA might be used as prognostic markers for developing premalignant lesions to cancer involving glucose metabolism in digestive diseases. Conclusion: For the first time, we discovered EndMT's role in digestive diseases and described its metabolism, underscoring its crucial role in glucose metabolism in the disease. We found several targets via gene screening that are beneficial for predicting premalignant lesions that progress to cancer.

3.
Pharmacol Res Perspect ; 10(2): e00914, 2022 04.
Article in English | MEDLINE | ID: mdl-35171536

ABSTRACT

Despite advantages of arsenic trioxide (ATO) in oncological practice, its clinical applications have been hampered by severe cardiotoxicity. The general mechanism of ATO-induced cardiotoxicity has been attributed to its damage to mitochondria, resulting in cardiac remodeling. Honokiol (HKL) is a naturally occurring compound derived from Magnolia bark. Previous studies have demonstrated that HKL exerts cardio-protective effects on ischemia/reperfusion (I/R) or chemical-induced cardiotoxicity by counteracting the toxic effects on mitochondria. The present study was conducted to investigate whether HKL pretreatment protects against ATO-induced cardiac oxidative damage and cell death. For the in vitro study, we evaluated the effects of ATO and/or Honokiol on reactive oxygen species (ROS) production and apoptosis induction in primary cultured cardiomyocytes; for the in vivo study, BALB/c mice were administrated with ATO and/or HKL for a period of 4 weeks, myocardial apoptosis, cardiac function, and cardiac remodeling (cardiac hypertrophy and cardiac fibrosis) were assessed at the end of administration. Our results demonstrated Honokiol pretreatment alleviated the ATO-induced boost in ROS concentration and the following apoptosis induction in primary cultured cardiomyocytes. In the mouse model, Honokiol pretreatment ameliorated ATO-induced myocardial apoptosis, cardiac dysfunction, and cardiac remodeling. Collectively, these results indicated that Honokiol provide a protection against ATO-induced cardiotoxicity by reducing mitochondrial damage. In addition, given that Honokiol has shown considerable suppressive effects on leukemia cells, our data also imply that ATO and Honokiol combination may possibly be a superior avenue in leukemia therapy.


Subject(s)
Apoptosis/drug effects , Arsenic Trioxide/toxicity , Biphenyl Compounds/pharmacology , Cardiotoxicity/prevention & control , Lignans/pharmacology , Animals , Biphenyl Compounds/isolation & purification , Cardiotoxicity/etiology , Lignans/isolation & purification , Magnolia/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...