Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(27): 17745-17755, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28657105

ABSTRACT

It is widely accepted that the role of the high molecular weight (HMW) component is cooperative in shear-induced crystallization, owing to entanglements among long chains. However, this paper demonstrates that the HMW component has a novel effect on structural evolution during the process of multi-melt multi-injection molding (M3IM), organized as follows. First, the appropriate HDPE system with an incremental concentration of HMW tails was established. Second, the crystalline morphologies and orientation behaviors of the M3IM samples were characterized using a combination of scanning electron microscopy (SEM) and two-dimensional small angle X-ray scattering (2D-SAXS), and these suggested that the amount of shish-kebabs was not monotonically promoted with an increasing content of HMW tails but tended to reduce at a certain value. Third, in order to explain this phenomenon, the special temperature and shear profiles of M3IM were depicted subsequently, and finally the mechanism of hierarchical structure formation with the influence of various amounts of HMW tail chains was discussed, based on the classical rheological viewpoint.

2.
Phys Chem Chem Phys ; 18(44): 30452-30461, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27781215

ABSTRACT

The formation of a hybrid shish-kebab (HSK) structure with different degrees of lamellar orientations was first observed in the solution crystallization of polyethylene (PE) in the presence of carbon nanofibers (CNFs). In this study, PE crystal lamellae were periodically decorated on the surface of CNFs and were aligned approximately perpendicular to the long axes of the CNFs, forming aligned hybrid shish-kebab nanostructures. More importantly, the fascinating structure was directly formed in all regions of the injection molded bars of HDPE/CNF composites, via a gas-assisted injection molding (GAIM), instead of the shell-core structure. In the GAIM process, an intense shear was imposed onto the melt during the melt second flow and drove PE chains to orient along the axes of the CNFs. Then the entropy penalty for PE chains deposited on the CNF surface was drastically decreased. Although the attractive van der Waals interactions were weak, the oriented PE chains could successfully adsorb on the CNF surface due to the decrease of the entropy penalty, therewith the underlayer coating was formed along the axis based on a two-dimensional mode for early nucleation on the CNF surface. Subsequently, subglobules appeared on the ordered structure, which could be regarded as the crystal nucleus. Finally, the oriented PE chains began to epitaxially grow from the subglobules with a folded-chain shape to decrease the polymer surface energy and grew perpendicular to the CNFs long axis, abiding by the "soft epitaxy" crystallization mechanism regardless of strict lattice matching.

3.
Phys Chem Chem Phys ; 18(20): 14030-9, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27157694

ABSTRACT

A strong shear flow was imposed on the melt of polycarbonate (PC) microfibrils with ß-nucleation agent reinforced isotactic polypropylene (iPP) during the melt second flow process, i.e. gas-assisted injection molding (GAIM). A special shell-core structure was formed in the iPP/PC microfibrils with ß-nucleation agent (PP/PC/ß-NA) composites. A lot of ß-transcrystalline and α-transcrystalline superstructures were observed in the skin and sub-skin regions, whereas ß-spherulite structures were formed in the gas channel region. There is no doubt that the distinct hierarchical structure has great potential to significantly improve the mechanical performance of the composites, and the experimental results verify this. The results of the mechanical performance testing show that the yield strength of the PP/PC/ß-NA composites reached 61.9 MPa, which is 19.7 MPa higher than that of the iPP parts molded by GAIM (G-iPP) (42.2 MPa). The tensile modulus of the PP/PC/ß-NA composites (3.3 GPa) increased by 135%, compared to that of G-iPP (1.4 GPa). The high content of ß-crystals improved the elongation at break of the composites compared to the iPP/PC microfibril (PP/PC) composites; the elongation at break of the PP/PC/ß-NA composites (13%) is over 3 times greater than that of the PP/PC composites (4%).

SELECTION OF CITATIONS
SEARCH DETAIL
...