Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17304, 2024 May.
Article in English | MEDLINE | ID: mdl-38711381

ABSTRACT

Subtropical forests, recognized for their intricate vertical canopy stratification, exhibit high resistance to extreme drought. However, the response of leaf phenology to drought in the species-rich understory remains poorly understood. In this study, we constructed a digital camera system, amassing over 360,000 images through a 70% throughfall exclusion experiment, to explore the drought response of understory leaf phenology. The results revealed a significant advancement in understory leaf senescence phenology under drought, with 11.75 and 15.76 days for the start and end of the leaf-falling event, respectively. Pre-season temperature primarily regulated leaf development phenology, whereas soil water dominated the variability in leaf senescence phenology. Under drought conditions, temperature sensitivities for the end of leaf emergence decreased from -13.72 to -11.06 days °C-1, with insignificance observed for the start of leaf emergence. Consequently, drought treatment shortened both the length of the growing season (15.69 days) and the peak growth season (9.80 days) for understory plants. Moreover, this study identified diverse responses among intraspecies and interspecies to drought, particularly during the leaf development phase. These findings underscore the pivotal role of water availability in shaping understory phenology patterns, especially in subtropical forests.


Subject(s)
Droughts , Plant Leaves , Seasons , Plant Leaves/growth & development , Plant Leaves/physiology , Temperature , Forests , Water/metabolism , Trees/growth & development , Trees/physiology , Soil , Tropical Climate , China
2.
Sci Total Environ ; 820: 153175, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35051451

ABSTRACT

Temperature affects leaf lifespan (LL) across either space or time, driving long-term adaptation and short-term thermal acclimation, respectively. However, a comprehensive understanding of the phenomenon and the underlying phenological mechanisms remain poorly understood. The present study investigated the relationship between LL and temperature in six common deciduous trees across both spatial and temporal gradients, then explained the LL variation patterns based on phenological shifts. Using long-term (1971-2000) phenological records of six deciduous tree species at 54 sites across central Europe, we analyzed spatial and temporal variations of LL and leaf phenology along temperature gradients. We assessed the relative contribution of phenological shifts to LL variations by comparing absolute changes in leaf-out and leaf fall. We reported positive LL-temperature relationships across all observations along both spatial (+3.32 days/°C) and temporal (+4.43 days/°C) gradients. The paired t-test of the six deciduous tree species showed no significant difference in regression slopes of LL- temperature between the two gradients (t = -1.50, df = 5, P = 0.194). Prolonged LL can be explained mainly by earlier leaf-out induced by warmer temperatures both spatially (-3.22 days/°C) and temporally (-4.08 days/°C). The converging temperature-dependent patterns of LL across time and space indicate that short-term thermal acclimation keeps pace with long-term genetic adaptation for deciduous trees in Europe. Earlier leaf-out is the key force shaping the LL-temperature relationship. These results provide insights for predicting future vegetation dynamics under global warming.


Subject(s)
Longevity , Trees , Climate Change , Europe , Plant Leaves , Seasons , Temperature
3.
BMC Plant Biol ; 19(1): 43, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30700249

ABSTRACT

BACKGROUND: Internal γ-Aminobutyric Acid (GABA) interacting with stress response substances may be involved in the regulation of differentially abundant proteins (DAPs) associated with optimum temperature and cold stress in tea plants (Camellia sinensis (L.) O. Kuntze). RESULTS: Tea plants supplied with or without 5.0 mM GABA were subjected to optimum or cold temperatures in this study. The increased GABA level induced by exogenous GABA altered levels of stress response substances - such as glutamate, polyamines and anthocyanins - in association with improved cold tolerance. Isobaric tags for relative and absolute quantification (iTRAQ) - based DAPs were found for protein metabolism and nucleotide metabolism, energy, amino acid transport and metabolism other biological processes, inorganic ion transport and metabolism, lipid metabolism, carbohydrate transport and metabolism, biosynthesis of secondary metabolites, antioxidant and stress defense. CONCLUSIONS: The iTRAQ analysis could explain the GABA-induced physiological effects associated with cold tolerance in tea plants. Analysis of functional protein-protein networks further showed that alteration of endogenous GABA and stress response substances induced interactions among photosynthesis, amino acid biosynthesis, and carbon and nitrogen metabolism, and the corresponding differences could contribute to improved cold tolerance of tea plants.


Subject(s)
Camellia sinensis/metabolism , Plant Proteins/metabolism , gamma-Aminobutyric Acid/pharmacology , Camellia sinensis/drug effects , Camellia sinensis/physiology , Chlorophyll/metabolism , Cold Temperature , Cold-Shock Response , Gene Expression Regulation, Plant , Glutamic Acid/metabolism , Mass Spectrometry , Plant Proteins/physiology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...