Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(35): 52995-53008, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35277815

ABSTRACT

Using MXene as substrate, CoOOH@MXene with different mass content of CoOOH were prepared and used to active peroxymonosulfate (PMS) for the sulfamethoxazole (SMX) degradation. The sample characterizations demonstrated the successful preparation of CoOOH@MXene. CoOOH@MXene possessed much higher BET surface area (183.82 m2/g) than CoOOH (85.36 m2/g) and MXene (6.89 m2/g) due to the good dispersibility of CoOOH particles on MXene. Due to its large surface area, 1.3CoOOH@MXene displayed the best catalytic performance for the degradation of SMX. With 0.2 g/L of 1.3CoOOH@MXene and 0.5 mM of PMS, 20 µM of SMX was completely eliminated in 10 min. The degradation followed pseudo-first-order kinetic model well, with rate constants of 0.33 min-1 for 1.3CoOOH@MXene and 0.054 min-1 for CoOOH. Influencing factors of initial pH, catalyst dosage, PMS concentration, SMX concentration, and co-existing anions on SMX degradation were assessed systematically. Recycling tests verified the excellent reusability and stability of the catalyst. Quenching experiments and electron paramagnetic resonance analysis substantiated that 1O2 played a leading role. Moreover, the intermediates were identified, and degradation pathways and activation mechanism of CoOOH@MXene for PMS were proposed. This work may highlight the application of MXene with transition metals in PMS activation.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Cobalt , Oxides , Peroxides/chemistry , Sulfamethoxazole/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL