Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 356: 120543, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479284

ABSTRACT

In aquifers, the sequestration and transformation of organic carbon are closely associated with soil iron oxides and can facilitate the release of iron ions from iron oxide minerals. There is a strong interaction between dissolved organic matter (DOM) and iron oxide minerals in aquifers, but the extent to which iron is activated by DOM exposure to active iron minerals in natural aquifers, the microscopic distribution of minerals on the surface, and the mechanisms involved in DOM molecular transformation are currently unclear. This study investigated the nonbiological reduction transformation and coupled adsorption of iron oxide minerals in aquifers containing DOM from both macro- and micro perspectives. The results of macroscopic dynamics experiments indicate that DOM can mediate soluble iron release during the reduction of iron oxide minerals, that pH strongly affects DOM removal, and that DOM is more efficiently degraded at low rather than high pH values, suggesting that a low pH is conducive to DOM adsorption and oxidation. Spherical aberration-corrected scanning transmission electron microscopy (SACTS) indicates that the reacted mineral surfaces are covered with large amounts of carbon and that dynamic agglomeration of iron, carbon, and oxygen occurs. At the nanoscale, three forms of DOM are found in the mineral surface agglomerates (on the surfaces, inside the surface agglomerates, and in the polymer pores). The microscopic organic carbon and iron mineral reaction patterns can form through oxidation reactions and selective adsorption effects. Fourier transform ion cyclotron resonance mass spectra indicate that both synergistic and antagonistic reactions occur between DOM and the minerals, that the release of iron is accompanied by DOM decomposition and humification, that large oxygen- and carbon-containing molecules are broken down into smaller oxygen- and carbon-containing compounds and that more molecules are produced through oxidation under acidic rather than alkaline conditions. These molecules provide adsorption sites for sediment, meaning that more iron can be released. Microscopic evidence for the release of iron was acquired. These results improve the understanding of the geochemical processes affecting iron in groundwater, the nonbiological transformation mechanisms that occur at the interfaces between natural iron minerals and organic matter, groundwater pollution control, and the environmental behavior of pollutants.


Subject(s)
Ferric Compounds , Groundwater , Humic Substances , Adsorption , Minerals , Iron/chemistry , Carbon , Organic Chemicals , Dissolved Organic Matter , Oxygen
2.
Sci Total Environ ; 896: 165140, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37391144

ABSTRACT

Hyporheic zone (HZ) systems have a natural purification capacity, and they are commonly used to provide high quality drinking water. However, the presence of organic contaminants in HZ systems in anaerobic environments causes the aquifer sediments to release metals (e.g., Fe) at levels above drinking water standards, which affects the quality of groundwater. In this study, the effects of typical organic pollutants (dissolved organic matter (DOM)) on Fe release from anaerobic HZ sediments were investigated. Ultraviolet fluorescence spectroscopy, three-dimensional excitation-emission matrix fluorescence spectroscopy, excitation-emission matrix spectroscopy coupled with parallel factor analysis and Illumina MiSeq high-throughput sequencing were used to determine the effects of the system conditions on Fe release from HZ sediments. Compared with the control conditions (low traffic and low DOM as a baseline), the Fe release capacity was enhanced by 26.7 % and 64.4 % at low flow rate (85.8 m/d) and high organic matter concentration (1200 mg/L), which was consistent with the residence-time effect. The transport of heavy metals under different system conditions varied with the influent organic composition. The influent organic matter composition and fluorescence parameters (the humification index, biological index and fluorescence index) were closely related to the release of the Fe effluent, while these factors had less influence on Mn and As. From 16S rRNA analysis of the aquifer media at different depths at the end of the experiment, under low flow rate and high influent concentration conditions, reduction of Fe minerals by Proteobacteria, Actinobacteriota, Bacillus, and Acidobacteria promoted the release of Fe. These functional microbes play an active role in the Fe biogeochemical cycle in addition to reducing Fe minerals to promote Fe release. In summary, this study reveals the effects of the flow rate and influent DOM concentration on the release and biogeochemistry of Fe in the HZ. The results presented herein will contribute to a better understanding of the release and transport of common groundwater contaminants in the HZ and other groundwater recharge environments.


Subject(s)
Drinking Water , Groundwater , Metals, Heavy , Water Pollutants, Chemical , Dissolved Organic Matter , Drinking Water/analysis , RNA, Ribosomal, 16S , Metals, Heavy/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis
3.
Environ Res ; 216(Pt 1): 114430, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36181893

ABSTRACT

Riverbank filtration (RBF) constitutes an important part of the water cycle, which involves active natural filtration leading to pollution of river water being intercepted and retained. The RBF has the function of water purification, but retention of exogenous pollutants in the RBF system complicates biogeochemical processes due to the presence of primary active components. In this study, we verified the essential role of microbial mediation during the interactions between primary Fe minerals in the RBF system and dissolved organic matter (DOM) in river water based on lab-scale experiments. The results demonstrated that DOM from infiltration of river water increased the amount of iron (Fe) released from the sediment in RBF, leading to an increase in Fe concentration in groundwater by higher than one order of magnitude. In particular, the existence of Fe bacteria even made this effect more thorough and more complex. Abiotic reduction was shown to play a more significant role in increasing Fe release than microbe-mediated reduction. Increasing the amount of Fe released could change the distribution of Fe minerals at the sediment surface, thereby affecting the structure of the microbial community in the RBF system and decreasing the DOM concentration in the groundwater. Moreover, As and Mn were found to behave in a similar manner as Fe due to their close biochemical properties when interacting with primary minerals in sediment. This study not only provides mechanistic insight into the higher Fe concentrations encountered in the groundwater of nearby rivers but also has important practical implications for developing nature-based technologies for water pollution control and environmental remediation.


Subject(s)
Groundwater , Water Pollutants, Chemical , Dissolved Organic Matter , Filtration/methods , Rivers/chemistry , Water , Water Pollutants, Chemical/analysis
4.
Ecotoxicol Environ Saf ; 244: 114070, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36099687

ABSTRACT

Due to extensive water exchanges and abundant active biochemical compositions, active and complex hydrogeochemical processes often exist in riverbank filtration (RBF). The distribution of microbes is considered to be profoundly affected by these processes and is considered to impact the hydrogeochemical processes and the migration and transformation of water pollutants in turn and then impact the water quality. The distribution of microbes and their response to the physiochemical properties along a vertical RBF profile perpendicular to the Songhua River in Northeast China was explored by using 16 S rRNA and redundancy analysis (RDA). The results showed that various microbes were found in the vertical riparian filter (RBF) curve, including Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. With increasing depth (vertical) and distance from the river (lateral), the microbial community and diversity in the RBF sediment profile decreased. Nitrospirota, Pseudomonas, Gammaproteobacteria, Ochrobactrum, Acinetobacter and Desulfobacterota of the RBF core taxa were also significantly correlated with the biotransformation behavior of typical groundwater pollutants (ammonia, Fe, Mn and S). The amount of As in the RBF is too low to sustain microbial survival. Some microbes in RBF can also degrade natural organic pollutants. This study not only revealed the spatial distribution of geological microbes under the impact of hydrological processes but also lays a foundation for the further study of the hydrobiogeochemical processes of active biochemical compositions in groundwater and water quality evolution, which is of positive significance to ensure the quality safety of the drinking water supplied by RBFs.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Water Pollutants , Ammonia/analysis , Drinking Water/analysis , Filtration/methods , Groundwater/chemistry , Rivers/chemistry , Water Pollutants/analysis , Water Pollutants, Chemical/analysis
5.
Bioresour Technol ; 363: 127879, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36058537

ABSTRACT

The cellulose-rich residual solids are obtained with p-toluenesulfonic acid (p-TsOH) treatment. However, better fractionation of hemicellulose and separation is difficult to obtain during treatment. This study aims at investigating the separation selectivity of bamboo hemicellulose using freeze-thaw-assisted p-TsOH (F/p-TsOH) treatment. The desired separation effect was achieved at freezing temperature -40 °C, freezing time 20 h, p-TsOH concentration 3.0 %, treatment temperature 130 °C and time 80 min. 93.26 % hemicellulose separation was found, which was 32.88 % higher than that of conventional p-TsOH treatment. Furthermore, the separation yield of lignin decreased significantly from 69.29 % to 13.98 %. The distinct lignin characteristic absorption peaks were found, while that of hemicellulose was difficult to observe. The fiber crystallinity index increased from 50.42 to 56.55 %. Furthermore, greater selectivity for hemicellulose separation was achieved. The results provide a new research thinking for efficient fractionation of lignocellulosic biomass by organic acid treatment.


Subject(s)
Cellulose , Lignin , Acids , Benzenesulfonates , Freezing , Polysaccharides , Temperature
6.
Int J Mol Sci ; 23(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35955877

ABSTRACT

As a green and efficient component separation technology, organic acid pretreatment has been widely studied in biomass refining. In particular, the efficient separation of lignin by p-toluenesulfonic acid (p-TsOH) pretreatment has been achieved. In this study, the mechanism of the atmospheric separation of bagasse lignin with p-TsOH was investigated. The separation kinetics of lignin was analyzed. A non-simple linear relationship was found between the separation yield of lignin and the concentration of p-TsOH, the temperature and the stirring speed. The shrinking nucleus model for the separation of lignin was established based on the introduction of mass transfer and diffusion factors. A general model of the total delignification rate was obtained. The results showed that the process of lignin separation occurred into two phases, i.e., a fast stage and a slow stage. The results provide a theoretical basis for the efficient separation of lignin by p-TsOH pretreatment.


Subject(s)
Cellulose , Lignin , Benzenesulfonates , Biomass , Hydrolysis
7.
Chemosphere ; 300: 134524, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398063

ABSTRACT

The groundwater in many aquifers contains elevated concentrations of iron (Fe). Although much of this Fe is from its release from water-bearing sediments under natural environmental conditions, sufficient evidence is lacking to clarify whether anthropogenic pollutants, such as dissolved organic matter (DOM), can increase this natural release. In this time series and comparative analysis study, an Fe increasing effect was verified through laboratory leaching tests. The influences of the aqueous environmental conditions, such as pH, were also investigated. DOM can promote the release of Fe from sediments and increase the concentration of Fe in groundwater. In addition, lower or higher pH and temperature can enhance the release of Fe to some extent. Higher concentrations of DOM provided a more thorough release of Fe from the sediment; additional ions such as Cu also affected Fe release. It is possible that complexation between DOM and Fe occurs through ligand dissolution and reduction, thus promoting the release of Fe. The findings indicate that DOM imported through anthropogenic activities can increase the release of Fe from aquifer sediments into groundwater, thus worsening Fe pollution in groundwater. This study explored the mechanism by which different types of DOM release Fe from aquifer sediments and investigated the factors that influence this process. The findings provide insights into the geochemical processes of Fe in the groundwater.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Dissolved Organic Matter , Geologic Sediments , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 808: 152162, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34875327

ABSTRACT

Anthropogenic pollutants (organic nitrogen and ammonia) can change the dynamic balances of hydrogeochemical components of groundwater, and this can affect the fates of the pollutants and groundwater quality. The aim of this paper is to assess the long-term impact of pollutants on groundwater component concentrations and species in three sites that has been polluted with illegal discharge wastewater containing organic nitrogen and ammonia, in order to reveal the interactions between nitrogen species and Mn. We analyzed semi-monthly groundwater data from three sites in northwestern China over a long period of time (2015-2020) by using statistical analyses, correlation analyses, and a correlation co-occurrence network method. The results showed that wastewater entering groundwater from surface changed the hydrogeochemical component concentrations and species significantly. The main form of inorganic nitrogen species changed from nitrate to ammonia. The Mn concentration increased from undetectable (<0.01 mg/L) to 1.64 mg/L (the maximum), which surpassed the guideline value suggested by China and WHO. The main mechanism for Mn increase is the reductive dissolution of Mn oxide caused by the oxidation of organic nitrogen. Mn­nitrogen species interaction complicates the transformation of nitrogen components. Chemoautotrophic denitrification and dissimilatory nitrate reduction to ammonium (DNRA) mediated by Mn are the major mechanisms of nitrate attenuation when dissolved oxygen is greater than 2 mg/L. Mn oxides reductive dissolution and reoxidation of Mn by nitrate reduction cause Mn to circulate in groundwater. The results provide field evidence for interactions between nitrogen species transformation and Mn cycle in groundwater. This has important implications for pollution management and groundwater remediation, particularly monitored natural attenuation.


Subject(s)
Environmental Pollutants , Groundwater , Water Pollutants, Chemical , Ammonia/analysis , China , Environmental Monitoring , Nitrates/analysis , Nitrogen , Water Pollutants, Chemical/analysis
9.
Cancer Biomark ; 30(1): 63-73, 2021.
Article in English | MEDLINE | ID: mdl-32924987

ABSTRACT

BACKGROUND: DNA methylation plays a vital role in modulating genomic function and warrants evaluation as a biomarker for the diagnosis and treatment of lung squamous cell carcinoma (LUSC). OBJECTIVE: In this study, we aimed to identify effective potential biomarkers for predicting prognosis and drug sensitivity in LUSC. METHODS: A univariate Cox proportional hazards regression analysis, a random survival forests-variable hunting (RSFVH) algorithm, and a multivariate Cox regression analysis were adopted to analyze the methylation profile of patients with LUSC included in public databases: The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO). RESULTS: A methylated region consisting of 3 sites (cg06675147, cg07064331, cg20429172) was selected. Patients were divided into a high-risk group and a low-risk group in the training dataset. High-risk patients had shorter overall survival (OS) (hazard ratio [HR]: 2.72, 95% confidence interval [CI]: 1.82-4.07, P< 0.001) compared with low-risk patients. The accuracy of the prognostic signature was validated in the test and validation cohorts (TCGA, n= 94; GSE56044, n= 23). Gene set variation analysis (GSVA) showed that activity in the cell cycle/mitotic, ERBB, and ERK/MAPK pathways was higher in the high-risk compared with the low-risk group, which may lead to differences in OS.Interestingly, we observed that patients in the high-risk group were more sensitive to gemcitabine and docetaxel than the low-risk group, which is consistent with results of the GSVA. CONCLUSION: We report novel methylation sites that could be used as powerful tools for predicting risk factors for poorer survival in patients with LUSC.


Subject(s)
Carcinoma, Squamous Cell/genetics , DNA Methylation/genetics , Lung Neoplasms/genetics , Aged , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Female , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Prognosis , Survival Analysis
10.
Ecotoxicol Environ Saf ; 208: 111524, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33129121

ABSTRACT

As one of the most widespread pollutants worldwide, nitrogen has long been a concern in the environment, including groundwater. However, due to the limitations of investigations and study progress, there is still a poor understanding of groundwater nitrogen pollution and its potential effects on human health in many areas, particularly in developing countries. The spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China were comprehensively studied based on both our own test data and available published data that were collected by us over a study period from 1995 to 2015. Groundwater nitrate nitrogen concentrations exhibited significant temporal and spatial differences: there was an increasing trend with time; and the distribution of high concentration areas expanded from the central and western areas to the east with time. The similar pattern existed in the potential health risks posed to the residents considering the two exposure pathways including drinking water and dermal contact. The effects of groundwater nitrate nitrogen on human health depend on the nitrate concentration but there were also age differences, namely, in the order of infants > children > adult females ≈ adult males, according to the hazard quotient (HQ) used in the human health risk assessment (HHRA) model. The spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks indicate that the issue of nitrogen pollution in groundwater in the study area is worsening and needs further attention. The drivers that increased nitrate nitrogen concentrations in the groundwater of the study area were the increased fertilizer use due to the increased cultivated land area and implementation of a land fertility policy by the local government. It should be acknowledged that the results have uncertainties that not only come from the layout of sampling points and selection of spatial interpolation methods but also come from the parameter settings in the assessment model and assumptions of drinking water scenarios. However, the conclusions still have important reference value for groundwater pollution control and management and human health risk supervision and early warning.


Subject(s)
Environmental Exposure/statistics & numerical data , Nitrates/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Child , China , Drinking Water/analysis , Environmental Monitoring , Female , Fertilizers , Groundwater , Humans , Infant , Male , Nitrogen/analysis , Risk Assessment
11.
Environ Pollut ; 252(Pt B): 1202-1215, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31252118

ABSTRACT

Concentrations of common pollutants in groundwater continue to increase, and emerging pollutants are also increasingly found worldwide, thereby increasingly impacting human activities. In this new situation, it is necessary, albeit more difficult, to once again recognize the hydrochemical genesis of groundwater and to subsequently screen the typical pollutants. Taking the groundwater of the Songnen Plain of Northeast China as an example, the hydrochemical genesis was identified using space interpolation, characteristic element ratio and factor analysis methods based on 368 groundwater samples. Subsequently, the typical pollutants with potential impacts on the health of the local residents were screened by the index system method newly established. All the measured hydrochemical compositions show an obvious spatial variation, with a uniform hydrochemical type of HCO3-Ca in the whole area. Both the major compositions (K, Na, Ca, Mg, HCO3, Cl and SO4) and trace compositions (Fe, Mn, Cu, Zn, Pb, As, F, I and Se) are mainly protogenetic in an environment impacted by the lixiviation of groundwater in the migration process in the strata, although these compositions have been impacted by human activities to varying degrees. The mass concentration of NO3-N has exceeded most of the major compositions except for HCO3 and Ca, which means the nitrogen pollution problem is already very serious; and this problem is mainly caused by the utilization of fertilizers and the discharge of industrial wastewater and domestic sewage. Human activities have obviously disrupted the natural dynamic balance of these chemicals between the environment and the groundwater, thereby intensifying the release of F, Fe and Mn from the environment. TDS, total hardness, tri-nitrogen, F, Fe, Mn, Pb and As in some parts are found to exceed the standards of groundwater quality to varying degrees. As, Pb, Fe, NO3-N, NO2-N, Mn, F and NH4-N are finally screened as the typical pollutants.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Water Pollutants, Chemical/analysis , China , Environmental Pollutants/analysis , Fertilizers/analysis , Human Activities , Humans , Sewage/analysis , Water Quality/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...