Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 17(5): 772-787, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38581129

ABSTRACT

The phytohormone auxin plays a pivotal role in governing plant growth and development. Although the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors function in both the nucleus and cytoplasm, the mechanism governing the distribution of TIR1/AFBs between these cellular compartments remains unknown. In this study, we demonstrate that auxin-mediated oxidation of TIR1/AFB2 is essential for their targeting to the nucleus. We showed that small active molecules, reactive oxygen species (ROS) and nitric oxide (NO), are indispensable for the nucleo-cytoplasmic distribution of TIR1/AFB2 in trichoblasts and root hairs. Further studies revealed that this process is regulated by the FERONIA receptor kinase-NADPH oxidase signaling pathway. Interestingly, ROS and NO initiate oxidative modifications in TIR1C140/516 and AFB2C135/511, facilitating their subsequent nuclear import. The oxidized forms of TIR1C140/516 and AFB2C135/511 play a crucial role in enhancing the function of TIR1 and AFB2 in transcriptional auxin responses. Collectively, our study reveals a novel mechanism by which auxin stimulates the transport of TIR1/AFB2 from the cytoplasm to the nucleus, orchestrated by the FERONIA-ROS signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Indoleacetic Acids , Oxidation-Reduction , Protein Serine-Threonine Kinases , Signal Transduction , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , F-Box Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Nitric Oxide/metabolism , Phosphotransferases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...