Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38853649

ABSTRACT

Intervertebral disc degeneration (IDD) is a significant cause of low back pain, characterized by excessive senescence and apoptosis of nucleus pulposus cells (NPCs). However, the precise mechanisms behind this senescence and apoptosis remains unclear. This study aimed to investigate the role of Tbxt in IDD both in vitro and in vivo, using a hydrogen peroxide (H2O2)-induced NPCs senescence and apoptosis model, as well as a rat acupuncture IDD model. Firstly, the expression of p16 and cleaved-caspase 3 significantly increased in degenerated human NPCs, accompanied by a decrease in Tbxt expression. Knockdown of Tbxt exacerbated senescence and apoptosis in the H2O2-induced NPCs degeneration model. Conversely, upregulation of Tbxt alleviated these effects induced by H2O2. Mechanistically, bioinformatic analysis revealed that the direct downstream target genes of Tbxt were highly enriched in autophagy-related pathways and overexpression of Tbxt significantly activated autophagy in NPCs. Moreover, the administration of the autophagy inhibitor, 3-methyladenine, impeded the impact of Tbxt on the processes of senescence and apoptosis in NPCs. Further investigation revealed that Tbxt enhances autophagy by facilitating the transcription of ATG7 through its interaction with a specific motif within the promoter region. In conclusion, this study suggests that Tbxt mitigates H2O2-induced senescence and apoptosis of NPCs by activating ATG7-mediated autophagy.

2.
Am J Physiol Cell Physiol ; 326(5): C1384-C1397, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690917

ABSTRACT

Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.


Subject(s)
Aggrecans , Extracellular Matrix , Fetal Proteins , Gene Expression Regulation , Nucleus Pulposus , Smad3 Protein , Adult , Animals , Female , Humans , Male , Middle Aged , Rats , Aggrecans/metabolism , Aggrecans/genetics , Cells, Cultured , Collagen Type II/metabolism , Collagen Type II/genetics , Extracellular Matrix/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Rats, Sprague-Dawley , Smad3 Protein/metabolism , Smad3 Protein/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
3.
FASEB J ; 37(6): e22976, 2023 06.
Article in English | MEDLINE | ID: mdl-37227215

ABSTRACT

Nucleus pulposus (NP) degeneration is characterized by the decreased cellularity of nucleus pulposus cells (NPCs) and diminished content of hydrophilic extracellular matrix (ECM). Overexpression of brachyury has been reported to reverse the degenerated NPCs into healthy phenotypes. However, the direct correlation between brachyury and ECM has not been fully elucidated. This study revealed that brachyury expression decreased in human degenerated NP tissues and Lipopolysaccharide (LPS)-induced degenerated rat NPCs model. In vitro and in vivo experiments further showed that brachyury deficiency suppressed the synthesis of aggrecan and collagen II in NP. Mechanistically, ChIP-qPCR assays demonstrated that brachyury bound to the promoter region of aggrecan in NPCs. Furthermore, luciferase reporter assays revealed that brachyury transcriptionally activated aggrecan expression through binding with a novel specific motif. In rat in vivo model, brachyury overexpression partially reversed the degenerative phenotype. In conclusion, brachyury positively regulated ECM synthesis via directly promoting aggrecan transcription in NPCs. Accordingly, it may be helpful to be developed into a promising therapeutic target for NP degeneration.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Humans , Rats , Aggrecans/genetics , Aggrecans/metabolism , Extracellular Matrix/metabolism , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...