Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 25(1): 102, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38641822

ABSTRACT

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Subject(s)
Positive Transcriptional Elongation Factor B , RNA Polymerase II , Humans , Chromatin , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
2.
Pest Manag Sci ; 76(6): 2127-2143, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31951094

ABSTRACT

BACKGROUND: The oriental fruit fly, Bactrocera dorsalis (Hendel), is an important agricultural pest and has developed resistance to many insecticides. To investigate vital genes participating in metamorphosis for development of additional control strategies, a comprehensive transcriptome analysis covering ten developmental stages of B. dorsalis was performed. RESULTS: There were 2132, 952, 1062, 2301 and 1333 differentially expressed genes identified during hatching, 1st-instar larval molting, 2nd-instar larval molting, pupariation and emergence, respectively. Further expression analyses indicated that genes in hormone- (20-hydroxyecdysone and juvenile hormone) and cuticle- (chitin and cuticle protein) related pathways were essential for metamorphosis in B. dorsalis. Among chitinase (Cht) genes, BdCht-5, -8 and -10 were differentially expressed during larval-larval, larval-pupal and pupal-adult moltings. However, BdCht7 was differentially expressed during egg-larval and larval-larval moltings. Knockdown of BdCht7 at the 1st-instar larval stage disrupted normal development of larvae and was lethal to B. dorsalis. Among cuticle protein (CP) genes, 15 genes (BdCPLCG-1, BdCPLCP-2, BdCPAP1-B2, BdRR1-21, BdRR1-31, BdRR2-15, BdRR2-26, BdRR2-30, BdRR2-32, BdTweedle-9, BdTweedle-24, BdRR2-10, BdCPAP3-C1, BdRR1-34 and BdRR1-41) were differentially expressed during four of five types of moltings. Among hormone-relative genes, BdJHBP-4, -9 and -13 were differentially expressed during all five types of moltings, whereas BdJHBP-5, -12 and BdHR4 were differentially expressed during four of five types of moltings. CONCLUSION: This study reveals critical genes involved in development and metamorphosis of B. dorsaslis, and BdCht7 is dispensable for larval survival. It also provides comprehensive transcriptome information for finding more molecular targets to control this pest. © 2020 Society of Chemical Industry.


Subject(s)
Tephritidae , Animals , Gene Expression Profiling , Insect Proteins , Larva , Pupa , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...