Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Biol Macromol ; 266(Pt 2): 131345, 2024 May.
Article in English | MEDLINE | ID: mdl-38574935

ABSTRACT

Cotton fiber holds immense importance as the primary raw material for the textile industry. Consequently, comprehending the regulatory mechanisms governing fiber development is pivotal for enhancing fiber quality. Our study aimed to construct a regulatory network of competing endogenous RNAs (ceRNAs) and assess the impact of non-coding RNAs on gene expression throughout fiber development. Through whole transcriptome data analysis, we identified differentially expressed genes (DEGs) regulated by non-coding RNA (ncRNA) that were predominantly enriched in phenylpropanoid biosynthesis and the fatty acid elongation pathway. This analysis involved two contrasting phenotypic materials (J02-508 and ZRI015) at five stages of fiber development. Additionally, we conducted a detailed analysis of genes involved in fatty acid elongation, including KCS, KCR, HACD, ECR, and ACOT, to unveil the factors contributing to the variation in fatty acid elongation between J02-508 and ZRI015. Through the integration of histochemical GUS staining, dual luciferase assay experiments, and correlation analysis of expression levels during fiber development stages for lncRNA MSTRG.44818.23 (MST23) and GhKCR2, we elucidated that MST23 positively regulates GhKCR2 expression in the fatty acid elongation pathway. This identification provides valuable insights into the molecular mechanisms underlying fiber development, emphasizing the intricate interplay between non-coding RNAs and protein-coding genes.


Subject(s)
Fatty Acids , Gene Expression Regulation, Plant , Gossypium , RNA, Untranslated , Cotton Fiber , Fatty Acids/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Gossypium/genetics , Gossypium/metabolism , Metabolic Networks and Pathways/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcriptome
2.
Mol Ther Methods Clin Dev ; 32(1): 101214, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38496303

ABSTRACT

Inducible nitric oxide synthase (iNOS), regulated by nuclear factor kappa B (NF-κB), is crucial for intestinal inflammation and barrier injury in the progression of necrotizing enterocolitis (NEC). The NF-κB pathway is inhibited by S-glutathionylation of inhibitory κB kinase ß (IKKß), which can be restored by glutaredoxin-1 (Grx1). Thus, we aim to explore the role of Grx1 in experimental NEC. Wild-type (WT) and Grx1-knockout (Grx1-/-) mice were treated with an NEC-inducing regimen. Primary intestinal epithelial cells (IECs) were subjected to LPS treatment. The production of iNOS, NO, and inflammation injuries were assessed. NF-κB and involved signaling pathways were also explored. The severity of NEC was attenuated in Grx1-/- mice. Grx1 ablation promoted IKKß glutathionylation, NF-κB inactivation, and decreased iNOS, NO, and O2·- production in NEC mice. Furthermore, Grx1 ablation restrained proinflammatory cytokines and cell apoptosis, ameliorated intestinal barrier damage, and promoted proliferation in NEC mice. Grx1 ablation protected NEC through iNOS and NO inhibition, which related to S-glutathionylation of IKKß to inhibit NF-κB signaling. Grx1-related signaling pathways provide a new therapeutic target for NEC.

3.
J Agric Food Chem ; 71(22): 8527-8539, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37224334

ABSTRACT

Goat milk is increasingly recognized by consumers due to its high nutritional value, richness in short- and medium-chain fatty acids, and richness in polyunsaturated fatty acids (PUFA). Exogenous supplementation of docosahexaenoic acid (DHA) is an important approach to increasing the content of PUFA in goat milk. Several studies have reported benefits of dietary DHA in terms of human health, including potential against chronic diseases and tumors. However, the mechanisms whereby an increased supply of DHA regulates mammary cell function is unknown. In this study, we investigated the effect of DHA on lipid metabolism processes in goat mammary epithelial cells (GMEC) and the function of H3K9ac epigenetic modifications in this process. Supplementation of DHA promoted lipid droplet accumulation increased the DHA content and altered fatty acid composition in GMEC. Lipid metabolism processes were altered by DHA supplementation through transcriptional programs in GMEC. ChIP-seq analysis revealed that DHA induced genome-wide H3K9ac epigenetic changes in GMEC. Multiomics analyses (H3K9ac genome-wide screening and RNA-seq) revealed that DHA-induced expression of lipid metabolism genes (FASN, SCD1, FADS1, FADS2, LPIN1, DGAT1, MBOAT2), which were closely related with changes in lipid metabolism processes and fatty acid profiles, were regulated by modification of H3K9ac. In particular, DHA increased the enrichment of H3K9ac in the promoter region of PDK4 and promoted its transcription, while PDK4 inhibited lipid synthesis and activated AMPK signaling in GMEC. The activation of the expression of fatty acid metabolism-related genes FASN, FADS2, and SCD1 and their upstream transcription factor SREBP1 by the AMPK inhibitor was attenuated in PDK4-overexpressing GMEC. In conclusion, DHA alters lipid metabolism processes via H3K9ac modifications and the PDK4-AMPK-SREBP1 signaling axis in goat mammary epithelial cells, providing new insights into the mechanism through which DHA affects mammary cell function and regulates milk fat metabolism.


Subject(s)
Docosahexaenoic Acids , Lipid Metabolism , Humans , Animals , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , AMP-Activated Protein Kinases/genetics , Triglycerides/metabolism , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Epigenesis, Genetic , Goats/genetics , Goats/metabolism , Mammary Glands, Animal/metabolism , Epithelial Cells/metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism
4.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36694375

ABSTRACT

Goat milk provides benefits to human health due to its richness in bioactive components, such as polyunsaturated fatty acids (PUFAs). The fatty acid desaturase 2 (FADS2) is the first rate-limiting enzyme in PUFAs biosynthesis. However, its role and transcriptional regulation mechanisms in fatty acid metabolism in dairy goat remain unclear. Here, our study revealed that the FADS2 gene was highly expressed during the peak lactation compared with the dry period, early lactation, and late lactation. The content of triacylglycerol (TAG) was enhanced with the increasing mRNA expression of TAG synthesis genes (diacylglycerol acyltransferase 1/2, DGAT1/2) in FADS2-overexpressed goat mammary epithelial cells (GMECs). Overexpression of FADS2 was positively correlated with the elevated concentrations of dihomo-gamma-linolenic acid (DGLA) and docosahexaenoic acid (DHA) in GMECs. BODIPY staining showed that FADS2 promoted lipid droplet accumulation in GMECs. To clarify the transcriptional regulatory mechanisms of FADS2, 2,226 bp length of FADS2 promoter was obtained. Deletion mutation assays revealed that the core region of FADS2 promoter was located between the -375 and -26 region, which contained SRE1 (-361/-351) and SRE2 (-191/-181) cis-acting elements of transcription factor sterol regulatory element-binding protein 1 (SREBP1). Overexpression of SREBP1 enhanced relative luciferase activity of the single mutant of SRE1 or SRE2, vice versa, and failed to alter the relative luciferase activity of the joint mutant of SRE1 and SRE2. Chromatin immunoprecipitation (ChIP) and site-directed mutation assays further demonstrated that SREBP1 regulated the transcription of the FADS2 gene by binding to SRE sites in vivo and in vitro. In addition, the mRNA levels of FADS2 were significantly decreased by targeting SRE1 and SRE2 sites in the genome via the CRISPR interference (CRISPRi) system. These findings establish a direct role for FADS2 regulating TAG and fatty acid synthesis by SREBP1 transcriptional regulation in dairy goat, providing new insights into fatty acid metabolism in mammary gland of ruminants.


The fatty acid desaturase 2 (FADS2) is the first rate-limiting enzyme in polyunsaturated fatty acids (PUFAs) biosynthesis in mammals. This study aimed to investigate the function and transcriptional regulation mechanism of FADS2 in goat mammary epithelial cells (GMECs). The content of triacylglycerol (TAG) was enhanced with lipid droplet accumulation in FADS2-overexpressed GMECs. Overexpression of FADS2 was positively correlated with elevated concentrations of docosahexaenoic acid (DHA) in GMECs. Furthermore, site-directed mutation and chromatin immunoprecipitation (ChIP) assays simultaneously demonstrated that FADS2 was directly regulated by SREBP1 transcriptional factor binding to sterol regulatory element (SRE) in vitro and in vivo. In addition, genetic ablation of SRE1 and SRE2 in the genome resulted in a significant reduction in the mRNA levels of FADS2 via the CRISPR interference (CRISPRi) system. Altogether, this study discovered that the SREBP1 exerts control on FADS2 to regulate milk fatty acids, and provides a theoretical approach for improving milk quality via genetic approaches.


Subject(s)
Fatty Acid Desaturases , Goats , Mammary Glands, Animal , Sterol Regulatory Element Binding Protein 1 , Animals , Female , Epithelial Cells/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Goats/genetics , Goats/metabolism , Luciferases/metabolism , Mammary Glands, Animal/metabolism , RNA, Messenger/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
5.
Int. microbiol ; 26(1): 99-108, Ene. 2023. ilus
Article in English | IBECS | ID: ibc-215921

ABSTRACT

Cadmium (Cd) can be transported into plants from polluted soils and may cause animal and human diseases through food chains, which requires the development of highly efficient methods for soil Cd remediation. Although we isolated an Enterobacter cloacae strain Cu6 with Cd resistance, this strain cannot be used for soil Cd remediation due to its lower resistance. Here, we domesticated Cu6 and obtained a highly Cd-resistant strain, LPY6, and found that this strain can attenuate the toxic effects of Cd on wheat seedling growth. We deciphered the high Cd-resistance mechanism of LPY6 by genome comparative and genetic analysis. Compared with Cu6, 75 genes were mutated in LPY6. Thirty-four of these genes were deleted, and 41 had single nucleotide polymorphisms (SNPs). Most of these mutated proteins are involved in basic metabolism, substrate transport, stress response and formate and hydrogen metabolism. RNA quantitative analysis and promoter activity assays showed that the transcription or mRNA levels of two operons (cadA and norVW) in these mutated genes were regulated by Cd, zinc (Zn) or lead (Pb) ions, suggesting that these two operons might be required for Cd, Zn or Pb resistance. Expression of cadA and norVW operons in LPY6 partially recovered Cd susceptibility, demonstrating that CadA and NorVW are involved in Cd resistance in E. cloacae. Our findings illustrate that E. cloacae acquires Cd resistance through different pathways and lay a foundation for developing highly efficient methods for soil Cd remediation.(AU)


Subject(s)
Humans , Cadmium , Cadmium Poisoning , Enterobacter cloacae , Microbiology
6.
Int Immunopharmacol ; 114: 109538, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36502593

ABSTRACT

This study aimed to investigate the effects of an organic acid (OA) blend on intestinal barrier function, intestinal inflammation, and gut microbiota in mice challenged with enterotoxigenic Escherichia coli K88 (ETEC K88). Ninety female Kunming mice (7 weeks old) were randomly allotted to five treatments with six replicates per treatment and three mice per replicate. The five treatments were composed of the non-ETEC K88 challenge group and ETEC K88 challenge + OA blend groups (0, 0.6 %, 1.2 %, and 2.4 % OA blend). The OA blend consisted of 47.5 % formic acid, 47.5 % benzoic acid, and 5 % tributyrin. The feeding trial lasted for 15 days, and mice were intraperitoneally injected with PBS or ETEC K88 solution on day 15. At 24 h post-challenge, one mouse per replicate was selected for sample collection. The results showed that a dosage of 0.6 % OA blend alleviated the ETEC K88-induced intestinal barrier dysfunction, as indicated by the elevated villus height and the ratio of villus height to crypt depth of jejunum, and the reduced serum diamine oxidase (DAO) and D-lactate levels, as well as the up-regulated mRNA levels of ZO-1, Claudin-1, and Occludin in jejunum mucosa of mice. Furthermore, dietary addition with 0.6 % OA blend decreased ETEC K88-induced inflammation response, as suggested by the decreased TNF-α and IL-6 levels, and the increased IgA level in the serum, as well as the down-regulated mRNA level of TNF-α, IL-6, IL-1ß, TLR-4, MyD88, and MCP-1 in jejunum mucosa of mice. Regarding gut microbiota, the beta-diversity analysis revealed a remarkable clustering between the 0.6 % OA blend group and the ETEC K88 challenge group. Supplementation of 0.6 % OA blend decreased the relative abundance of Firmicutes, and increased the relative abundance of Bacteroidota, Desulfobacterota, and Verrucomicrobiota of colonic digesta in mice. Also, the butyric acid content in the colonic digesta of mice was increased by dietary 0.6 % OA blend supplementation. Collectively, a dosage of 0.6 % OA blend could alleviate the ETEC K88-induced intestinal barrier dysfunction by regulating intestinal inflammation and gut microbiota of mice.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Diseases , Gastrointestinal Microbiome , Intestinal Diseases , Mice , Female , Animals , Escherichia coli Infections/drug therapy , Interleukin-6 , Disease Models, Animal , Tumor Necrosis Factor-alpha , Benzoic Acid , Intestinal Mucosa , Enterotoxigenic Escherichia coli/physiology , Inflammation/drug therapy , RNA, Messenger
7.
Int Microbiol ; 26(1): 99-108, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36136279

ABSTRACT

Cadmium (Cd) can be transported into plants from polluted soils and may cause animal and human diseases through food chains, which requires the development of highly efficient methods for soil Cd remediation. Although we isolated an Enterobacter cloacae strain Cu6 with Cd resistance, this strain cannot be used for soil Cd remediation due to its lower resistance. Here, we domesticated Cu6 and obtained a highly Cd-resistant strain, LPY6, and found that this strain can attenuate the toxic effects of Cd on wheat seedling growth. We deciphered the high Cd-resistance mechanism of LPY6 by genome comparative and genetic analysis. Compared with Cu6, 75 genes were mutated in LPY6. Thirty-four of these genes were deleted, and 41 had single nucleotide polymorphisms (SNPs). Most of these mutated proteins are involved in basic metabolism, substrate transport, stress response and formate and hydrogen metabolism. RNA quantitative analysis and promoter activity assays showed that the transcription or mRNA levels of two operons (cadA and norVW) in these mutated genes were regulated by Cd, zinc (Zn) or lead (Pb) ions, suggesting that these two operons might be required for Cd, Zn or Pb resistance. Expression of cadA and norVW operons in LPY6 partially recovered Cd susceptibility, demonstrating that CadA and NorVW are involved in Cd resistance in E. cloacae. Our findings illustrate that E. cloacae acquires Cd resistance through different pathways and lay a foundation for developing highly efficient methods for soil Cd remediation.


Subject(s)
Cadmium , Enterobacter cloacae , Humans , Cadmium/toxicity , Cadmium/analysis , Enterobacter cloacae/genetics , Enterobacter cloacae/metabolism , Lead/analysis , Soil , Zinc/analysis
8.
Front Aging Neurosci ; 14: 1041744, 2022.
Article in English | MEDLINE | ID: mdl-36389065

ABSTRACT

Parkinson's disease (PD) has a characteristically unilateral pattern of symptoms at onset and in the early stages; this lateralization is considered a diagnostically important diagnosis feature. We aimed to compare the graph-theoretical properties of whole-brain networks generated by using resting-state functional MRI (rs-fMRI), diffusion tensor imaging (DTI), and the resting-state-informed structural connectome (rsSC) in patients with left-onset PD (LPD), right-onset PD (RPD), and healthy controls (HCs). We recruited 26 patients with PD (13 with LPD and 13 with RPD) as well as 13 age- and sex-matched HCs. Rs-fMRI and DTI were performed in all subjects. Graph-theoretical analysis was used to calculate the local and global efficiency of a whole-brain network generated by rs-fMRI, DTI, and rsSC. Two-sample t-tests and Pearson correlation analysis were conducted. Significantly decreased global and local efficiency were revealed specifically in LPD patients compared with HCs when the rsSC network was used; no significant intergroup difference was found by using rs-fMRI or DTI alone. For rsSC network analysis, multiple network metrics were found to be abnormal in LPD. The degree centrality of the left precuneus was significantly correlated with the Unified Parkinson's Disease Rating Scale (UPDRS) score and disease duration (p = 0.030, r = 0.599; p = 0.037, r = 0.582). The topological properties of motor-related brain networks can differentiate LPD and RPD. Nodal metrics may serve as important structural features for PD diagnosis and monitoring of disease progression. Collectively, these findings may provide neurobiological insights into the lateralization of PD onset.

9.
Genes (Basel) ; 13(9)2022 09 19.
Article in English | MEDLINE | ID: mdl-36140843

ABSTRACT

The unique topological structure of a turtle shell, including the special ribs-scapula relationship, is an evolutionarily novelty of amniotes. The carapacial ridge is a key embryonic tissue for inducing turtle carapace morphologenesis. However, the gene expression profiles and molecular regulatory mechanisms that occur during carapacial ridge development, including the regulation mechanism of rib axis arrest, the development mechanism of the carapacial ridge, and the differentiation between soft-shell turtles and hard-shell turtles, are not fully understood. In this study, we obtained genome-wide gene expression profiles during the carapacial ridge development of Mauremys reevesii using RNA-sequencing by using carapacial ridge tissues from stage 14, 15 and 16 turtle embryos. In addition, a differentially expressed genes (DEGs) analysis and a gene set enrichment analysis (GSEA) of three comparison groups were performed. Furthermore, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to analyze the pathway enrichment of the differentially expressed genes of the three comparative groups. The result displayed that the Wnt signaling pathway was substantially enriched in the CrTK14 vs. the CrTK15 comparison group, while the Hedgehog signaling pathway was significantly enriched in the CrTK15 vs. the CrTK16 group. Moreover, the regulatory network of the Wnt signaling pathway showed that Wnt signaling pathways might interact with Fgfs, Bmps, and Shh to form a regulatory network to regulate the carapacial ridge development. Next, WGCNA was used to cluster and analyze the expression genes during the carapacial ridge development of M. reevesii and P. sinensis. Further, a KEGG functional enrichment analysis of the carapacial ridge correlation gene modules was performed. Interesting, these results indicated that the Wnt signaling pathway and the MAPK signaling pathway were significantly enriched in the gene modules that were highly correlated with the stage 14 and stage 15 carapacial ridge samples of the two species. The Hedgehog signaling pathway was significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of M. reevesii, however, the PI3K-Akt signaling and the TGF-ß signaling pathways were significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of P. sinensis. Furthermore, we found that those modules that were strongly correlated with the stage 14 carapacial ridge samples of M. reevesii and P. sinensis contained Wnts and Lef1. While the navajo white 3 module which was strongly correlated with the stage 16 carapacial ridge samples of M. reevesii contained Shh and Ptchs. The dark green module strongly correlated with the stage 16 carapacial ridge samples of P. sinensis which contained Col1a1, Col1a2, and Itga8. Consequently, this study systematically revealed the signaling pathways and genes that regulate the carapacial ridge development of M. reevesii and P. sinensis, which provides new insights for revealing the molecular mechanism that is underlying the turtle's body structure.


Subject(s)
Biological Evolution , Turtles , Animals , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA , Ribs , Transforming Growth Factor beta/genetics , Turtles/genetics
10.
Oxid Med Cell Longev ; 2022: 2694316, 2022.
Article in English | MEDLINE | ID: mdl-35847591

ABSTRACT

Objective: To investigate the function of the human glymphatic system (GS) in patients with spontaneous intracerebral haemorrhage (sICH) using diffusion tensor imaging analysis along with the perivascular space (DTI-ALPS). Methods: Twenty patients with sICH and 31 healthy controls (HCs) were recruited for DTI and susceptibility-weighted imaging scanning. The diffusivity along the perivascular spaces, as well as the projection fibres and association fibres, was evaluated separately. The DTI-ALPS index of each subject was also calculated. Two-sample t-tests and paired t-tests were performed to analyse the difference in ALPS scores between patients and HCs, as well as that between the lesion side and contralateral side. Pearson correlation analysis was used to observe the relationship between disease duration and GS function. Results: The DTI-ALPS index on the lesion side was significantly lower than that of the contralateral side in patients with sICH (p < 0.01, t = -5.77), and it was also significantly lower than that of the ipsilateral side of HCs (p < 0.01, t = -9.50). No significant differences were found in the DTI-ALPS index on the nonlesion side between patients and HCs (p = 0.96, t = 0.05) or between the left and right cerebral hemispheres of HCs (p = 0.41, t = -0.83). The DTI-ALPS index of the lesion side in patients with sICH was significantly correlated with disease duration (p = 0.018, r = 0.537). Conclusions: The present study confirmed that GS dysfunction on the ipsilateral side of the lesion is impaired in patients with haemorrhagic stroke, indicating that the GS may be a separate system in the left and right cerebral hemispheres. The DTI-ALPS index can reflect disease duration. These findings have significant implications for understanding sICH from a new perspective.


Subject(s)
Diffusion Tensor Imaging , Glymphatic System , Cerebral Hemorrhage/diagnostic imaging , Diffusion Tensor Imaging/methods , Humans , Magnetic Resonance Imaging
11.
Arch Microbiol ; 204(5): 254, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35412082

ABSTRACT

A novel bacterium of the genus Streptomyces, designated TRM S81-3T, was isolated from soil in cotton fields of Xinjiang, China. Comparative 16S rRNA gene sequence analysis indicated that strain TRM S81-3T is most closely related to Streptomyces viridiviolaceus NBRC 13359T (98.9% sequence similarity); however, the average nucleotide identity (ANI) between strains TRM S81-3T and S. viridiviolaceus NBRC 13359T is relatively low (91.6%). Strain TRM S81-3T possesses LL-diaminopimelic acid as the diagnostic cell-wall diamino acid, MK-9(H4), MK-9(H6), and MK-9(H10) as the major menaquinones, and polar lipids including diphosphatidylglycerol (DPG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylmethyl ethanolamine (PME), phosphotidylinositolone (PI), phospholipid of unknown structure containing glucosamine (NPG), and two unidentified phospholipids (PLs).The major fatty acids are iso-C16:0, anteiso-C15:0, anteiso-C17:1 ω9c, anteiso-C17:0, iso-C15:0, and C14:0. The genomic DNA G + C content is 72.1%. Based on the evidence from this polyphasic study, strain TRM S81-3T represents a novel species of Streptomyces, for which the name Streptomyces grisecoloratus is proposed. The type strain is TRM S81-3T (= CCTCC AA 2020002T = LMG 31942T).


Subject(s)
Soil , Streptomyces , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gossypium , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology
12.
Mol Plant Pathol ; 23(3): 355-369, 2022 03.
Article in English | MEDLINE | ID: mdl-34837306

ABSTRACT

Xanthomonas campestris pv. campestris (Xcc) can cause black rot in cruciferous plants worldwide. Two-component systems (TCSs) are key for bacterial adaptation to various environments, including hosts. VemR is a TCS response regulator and crucial for Xcc motility and virulence. Here, we report that RavA is the cognate histidine kinase (HK) of VemR and elucidate the signalling pathway by which VemR regulates Xcc motility and virulence. Genetic analysis showed that VemR is epistatic to RavA. Using bacterial two-hybrid experiments and pull-down and phosphorylation assays, we found that RavA can interact with and phosphorylate VemR, suggesting that RavA is the cognate HK of VemR. In addition, we found that RpoN2 and FleQ are epistatic to VemR in regulating bacterial motility and virulence. In vivo and in vitro experiments demonstrated that VemR interacts with FleQ but not with RpoN2. RavA/VemR regulates the expression of the flagellin-encoding gene fliC by activating the transcription of the rpoN2-vemR-fleQ and flhF-fleN-fliA operons. In summary, our data show that the RavA/VemR TCS regulates FleQ activity and thus influences the expression of motility-related genes, thereby affecting Xcc motility and virulence. The identification of this novel signalling pathway will deepen our understanding of Xcc-plant interactions.


Subject(s)
Xanthomonas campestris , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Histidine Kinase/genetics , Histidine Kinase/metabolism , Phosphorylation , Virulence/genetics
13.
Curr Issues Mol Biol ; 45(1): 311-326, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36661508

ABSTRACT

(1) Background: C. vietnamensis is very suitable for growth in the low hilly areas of southern subtropical regions. Under appropriate conditions, the oil yield of C. vietnamensis can reach 1125 kg/ha (the existing varieties can reach 750 kg/ha). Moreover, the fruit of C. vietnamensis is large and the pericarp is thick (>5 cm). Therefore, a high seed ratio has become the main target economic trait for the breeding of C. vietnamensis. (2) Methods: A half-sibling population of C. vietnamensis plants with a combination of high and low seed ratios was constructed by crossing a C. vietnamensis female parent. Bulked segregant RNA analysis and full-length transcriptome sequencing were performed to determine the molecular mechanisms underlying a high seed ratio. (3) Results: Seed ratio is a complex quantitative trait with a normal distribution, which is significantly associated with four other traits of fruit (seed weight, seed number, fruit diameter, and pericarp thickness). Two candidate regions related to high seed ratio (HSR) were predicted. One spanned 140.8−148.4 Mb of chromosome 2 and was associated with 97 seed-yield-related candidate genes ranging in length from 278 to 16,628 bp. The other spanned 35.3−37.3 Mb on chromosome 15 and was associated with 38 genes ranging in length from 221 to 16,928 bp. Using the full-length transcript as a template, a total of 115 candidate transcripts were obtained, and 78 transcripts were predicted to be functionally annotated. The DEGs from two set pairs of cDNA sequencing bulks were enriched to cytochrome p450 CYP76F14 (KOG0156; GO:0055114, HSR4, HSR7), the gibberellin phytohormone pathway (GO:0016787, HSR5), the calcium signaling pathway (GO:0005509, HSR6), the polyubiquitin-PPAR signaling pathway (GO:0005515, HSR2, HSR3), and several main transcription factors (bZIP transcription factor, HSR1) in C. vietnamensis.

14.
Front Neurosci ; 15: 746264, 2021.
Article in English | MEDLINE | ID: mdl-34924929

ABSTRACT

Background: Post-stroke aphasia (PSA) results from brain network disorders caused by focal stroke lesions. However, it still remains largely unclear whether the impairment is present in intra- and internetwork functional connectivity (FC) within each resting-state network (RSN) and between RSNs in the subacute stage of PSA. Objectives: This study aimed to investigate the resting-state FC within and between RSNs in patients with PSA and observe the relationships between FC alterations and Western Aphasia Battery (WAB) measures. Methods: A total of 20 individuals with subacute PSA and 20 healthy controls (HCs) were recruited for functional MRI (fMRI) scanning, and only patients with PSA underwent WAB assessment. Independent component analysis was carried out to identify RSNs. Two-sample t-tests were used to calculate intra- and internetwork FC differences between patients with PSA and HCs. The results were corrected for multiple comparisons using the false discovery rate (FDR correction, p < 0.05). Partial correlation analysis was performed to observe the relationship between FC and WAB scores with age, gender, mean framewise displacement, and lesion volume as covariates (p < 0.05). Results: Compared to HCs, patients with PSA showed a significant increase in intranetwork FC in the salience network (SN). For internetwork FC analysis, patients showed a significantly increased coupling between left frontoparietal network (lFPN) and SN and decreased coupling between lFPN and right frontoparietal network (rFPN) as well as between lFPN and posterior default mode network (pDMN) (FDR correction, p < 0.05). Finally, a significant positive correlation was found between the intergroup difference of FC (lFPN-rFPN) and auditory-verbal comprehension (p < 0.05). Conclusion: Altered FC was revealed within and between multiple RSNs in patients with PSA at the subacute stage. Reduced FC between lFPN and rFPN was the key element participating in language destruction. These findings proved that PSA is a brain network disorder caused by focal lesions; besides, it may improve our understanding of the pathophysiological mechanisms of patients with PSA at the subacute stage.

15.
J Agric Food Chem ; 69(19): 5435-5445, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33945271

ABSTRACT

In the current work, a series of 1-trifluoromethyl cinnamyl alcohol derivatives were designed and synthesized and their antifungal activities were evaluated. The bioassay result showed that most compounds exhibited excellent antifungal activity in vitro at 10 µg mL-1. Next, photostable and easily synthesized compound 2 with broad-spectrum antifungal activity in vitro was selected as a potential candidate to evaluate its antibacterial and antifungal activities. The EC50 values of compound 2 against eight fungal plant pathogens in vitro ranged from 3.806 to 17.981 µg mL-1; at the same time, compound 2 could effectively control Podosphaera xanthii, Odium heveae Steinm, Puccinia striiformis West, and Puccinia sorghi in pot experiments. In addition, compound 2 exhibited excellent antibacterial activities in vitro and in vivo against Xanthomonas oryzae pv. oryzae. Furthermore, the absorption and translocation of compound 2 in wheat plants were determined by the high-performance liquid chromatography method. The result showed that compound 2 could be translocated acropetally as well as basipetally in wheat plants. Finally, it was found that compound 2 had no cross-resistance with carbendazim, azoxystrobin, and boscalid.


Subject(s)
Fungicides, Industrial , Anti-Bacterial Agents/pharmacology , Ascomycota , Fungicides, Industrial/pharmacology , Microbial Sensitivity Tests , Plant Diseases , Propanols , Structure-Activity Relationship , Xanthomonas
16.
PeerJ ; 9: e10988, 2021.
Article in English | MEDLINE | ID: mdl-33850644

ABSTRACT

Previous studies have found that inhibiting a task set plays an important role in task switching. However, the impact of stimulus-response (S-R) complexity on this inhibition processing has not been explored. In this study, we applied the backward inhibition paradigm (switching between tasks A, B, and C, presented in sets of three) in order to investigate inhibition performance under different S-R complexities caused by corresponding S-R mappings. The results showed that the difficult condition resulted in a greater switch cost than the moderate and easy conditions. Furthermore, we found a significant n-2 repetition cost under the easy S-R complexity that was reversed under the difficult S-R complexity. To verify stability of the reversed n-2 repetition cost in the difficult condition, we recruited another independent sample to conduct an additional experiment with the difficult condition. These results replicated the reversed n-2 repetition cost. These findings suggest that S-R complexity affects task-set inhibition in task switching because the effect of the task-set inhibition was insignificant when the S-R complexity increased; it was only significant under the easy condition. This result was caused by the different cognitive resource assignments.

17.
Front Nutr ; 7: 609022, 2020.
Article in English | MEDLINE | ID: mdl-33330599

ABSTRACT

Adequate maternal methyl-donor micronutrient (MET) intake is an important determinant of the organ development and metabolic renovation of offspring. The mechanism involved in skeletal myogenesis and the effect of MET supplementation during pregnancy on the maternal body remain unclear. Thus, this study aimed to investigate the potential effect of methyl donor micronutrients (MET) on skeletal muscle development and metabolism in offspring using pig models. Forty-three Duroc × Erhualian gilts were assigned to two dietary groups during gestation: control diet (CON) and CON diet supplemented with MET (folic acid, methionine, choline, vitamin B6, and vitamin B12). The results showed that maternal MET exposure during pregnancy significantly increased the concentrations of protein, triiodothyronine (T3), and thyroxine (T4) in colostrum and methyl metabolites, including S-adenosylmethionine (SAM), S-adenosyl-L-homocysteine (SAH), 5-methyl-tetrahydrofolate (5-MTHF), and betaine, in the maternal and offspring umbilical vein serum. A similar pattern was demonstrated in the body weight gain and myofiber diameters in offspring. In addition, maternal MET supplementation significantly increased the concentration of offspring serum insulin-like growth factor 1 (IGF-1), T3, and T4; upregulated the mRNA expression of IGF-1 and IGF-1 receptor (IGF-1r) and the phosphorylation level of protein kinases in offspring longissimus dorsi muscle; and upregulated the expression of myogenic genes and fast myosin heavy chain (fast MyHC) in offspring skeletal muscle. Supplementing sows with higher levels of MET during gestation may promote skeletal muscle differentiation and maturity and improve the skeletal muscle mass of the piglets.

18.
Sci Rep ; 8(1): 17675, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518878

ABSTRACT

Measurement of cell-free fetal DNA (cffDNA) is an indispensable process for non-invasive prenatal screening (NIPS). According to recent studies, cffDNA in maternal plasma can be enriched for various lengths of fragments, and a sufficient amount of cffDNA can effectively eliminate background interference on the part of maternal DNA. Therefore, we developed a simple and effective separation method, improved NIPS (iNIPS), that enriches the fetal fraction and improves the accuracy of NIPS for fetal aneuploid detection. We adopted a novel strategy to achieve enrichment of 125-135 bp cell-free DNA (cfDNA) by e-gel electrophoresis. To evaluate clinical performance, we compared NIPS and iNIPS results from 2153 retrospective clinical samples. Of the 22 samples with NIPS results of "no call", 17 samples were reclassified as "unaffected" (9 cases of chr13, 5 cases of chr18, and 3 cases of chr21); 2 samples remained classified as "no call" (1 case of chr18 and 1 case of chr21); and 3 samples were identified as T21 by iNIPS. The average increase in abundance of cfDNA fragments of 125-135 bp was 2.5 times, and the average decrease in maternal background interference was 1.3 times. On this basis, the detection of fetal aneuploidy was highly improved with the fetal fraction as low as 2%; iNIPS achieved 100% sensitivity and 99.90% specificity in retrospective samples.


Subject(s)
Aneuploidy , Cell-Free Nucleic Acids/genetics , Prenatal Diagnosis/methods , Female , Fetus/metabolism , Humans , Karyotyping/methods , Pregnancy
19.
Ginekol Pol ; 89(6): 326-334, 2018.
Article in English | MEDLINE | ID: mdl-30010182

ABSTRACT

OBJECTIVES: The maternal cell contamination in chorionic villus or amniotic fluid presents a serious preanalytical risk for prenatal misdiagnosis. The following study presents and validates a novel process for identifying MCC by detecting short tandem repeat markers on Ion Proton system. Initially, MCC testing was performed during the detection of chromosomal abnormalities so as to improve the detection efficiency and accuracy of this method. MATERIAL AND METHODS: More than 70 STR loci were selected to establish the detection progress. Capillary electrophoresis was used to compare the next generation sequencing detection results, as well as to identify the optimal STR on Ion Proton system. Evaluation criteria for maternal cell contamination were set, and the automated data analysis was performed. The detection sensitivity was validated via 4 groups with mixed samples and different proportions. RESULTS: Consequently, twenty-three clinical samples were tested to evaluate the detection accuracy. In addition, 14 reli-able STR loci, which were stably detected in more than 25 samples, were found. The detection sensitivity in maternal cell contamination was no less than 20%, while its accuracy reached 100% in clinical samples. CONCLUSIONS: Finally, we established and validated a novel detection procedure for maternal cell contamination in clinical prenatal samples using next generation sequencing. This procedure allowed us to simultaneously perform prenatal test-ing and MCC testing. Unlike the traditional capillary electrophoresis, this method is rapid, highly sensitive, and suitable for wide range of clinical applications.


Subject(s)
High-Throughput Nucleotide Sequencing , Prenatal Diagnosis/methods , Real-Time Polymerase Chain Reaction/methods , Female , Humans , Molecular Diagnostic Techniques/standards , Polymerase Chain Reaction/methods , Pregnancy
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 35(1): 56-59, 2018 Feb 10.
Article in Chinese | MEDLINE | ID: mdl-29419861

ABSTRACT

OBJECTIVE To analyze the data of non-invasive prenatal testing based on specific loci of circulating cell-free fetal DNA (cffDNA). METHODS Selected loci of target chromosomes were analyzed by sequence capture and sequencing. Meanwhile, 600 loci were selected from other chromosomes for determining the concentration of cffDNA. RESULTS A total of 768 specific loci were captured on chromosomes 21 and 18, and used to determine whether the two were abnormal. When the minimum concentration of detected cffDNA was set at 3% and the threshold of Z score was set to [-6,6], the specificity of the analysis was 99.37% and the sensitivity was 100%. CONCLUSION A reliable, convenient and low-cost analytical method has been developed. The method requires less sequencing data for non-invasive prenatal testing, and can accurately detect abnormalities of fetal chromosomes 21 and 18, and simultaneously determine the concentration of cffDNA.


Subject(s)
Cell-Free Nucleic Acids/genetics , Fetus/metabolism , Genetic Loci/genetics , Prenatal Diagnosis/methods , Algorithms , Cell-Free Nucleic Acids/chemistry , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Female , Gene Frequency , Humans , Polymorphism, Single Nucleotide , Pregnancy , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...