Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Toxicol Sci ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579196

ABSTRACT

Cadmium (Cd) is a ubiquitous toxic heavy metal and a potential neurotoxicant due to its wide use in industrial manufacturing processes and commercial products, including fertilizers. The general population is exposed to Cd through food and smoking due to high transfer rates of Cd from contaminated soil. Cd has been shown to mimic calcium ions (Ca2+) and interfere with intracellular Ca2+ levels and Ca2+ signaling in in vitro studies. However, nothing is known about Cd's effects on Ca2+ activity in neurons in live animals. This study aimed to determine if Cd disrupts Ca2+ transients of neurons in CA1 region of the hippocampus during an associative learning paradigm. We utilized in vivo Ca2+ imaging in awake, freely moving C57BL/6 mice to measure Ca2+ activity in CA1 excitatory neurons expressing genetically encoded Ca2+ sensor GCaMP6 during an associative learning paradigm. We found that a smaller proportion of neurons are activated in Cd-treated groups compared to control during fear conditioning, suggesting that Cd may contribute to learning and memory deficit by reducing activity of neurons. We observed these effects at Cd exposure levels that result in blood Cd levels comparable to the general US population levels. This provides a possible molecular mechanism for Cd interference of learning and memory at exposure levels relevant to US adults. To our knowledge, our study is the first to describe Cd effects on brain Ca2+ activity in vivo in freely behaving mice.

2.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298071

ABSTRACT

The apolipoprotein E (ApoE) gene is a genetic risk factor for late-onset Alzheimer's disease, in which ε4 allele carriers have increased risk compared to the common ε3 carriers. Cadmium (Cd) is a toxic heavy metal and a potential neurotoxicant. We previously reported a gene-environment interaction (GxE) effect between ApoE4 and Cd that accelerates or increases the severity of the cognitive decline in ApoE4-knockin (ApoE4-KI) mice exposed to 0.6 mg/L CdCl2 through drinking water compared to control ApoE3-KI mice. However, the mechanisms underlying this GxE effect are not yet defined. Because Cd impairs adult neurogenesis, we investigated whether genetic and conditional stimulation of adult neurogenesis can functionally rescue Cd-induced cognitive impairment in ApoE4-KI mice. We crossed either ApoE4-KI or ApoE3-KI to an inducible Cre mouse strain, Nestin-CreERTM:caMEK5-eGFPloxP/loxP (designated as caMEK5), to generate ApoE4-KI:caMEK5 and ApoE3-KI:caMEK5. Tamoxifen administration in these mice genetically and conditionally induces the expression of caMEK5 in adult neural stem/progenitor cells, enabling the stimulation of adult neurogenesis in the brain. Male ApoE4-KI:caMEK5 and ApoE3-KI:caMEK5 mice were exposed to 0.6 mg/L CdCl2 throughout the experiment, and tamoxifen was administered once Cd-induced impairment in spatial working memory was consistently observed. Cd exposure impaired spatial working memory earlier in ApoE4-KI:caMEK5 than in ApoE3-KI:caMEK5 mice. In both strains, these deficits were rescued after tamoxifen treatment. Consistent with these behavioral findings, tamoxifen treatment enhanced adult neurogenesis by increasing the morphological complexity of adult-born immature neurons. These results provide evidence for a direct link between impaired spatial memory and adult neurogenesis in this GxE model.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Mice , Animals , Male , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Cadmium/metabolism , Mice, Transgenic , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Neurogenesis , Memory Disorders/metabolism , Hippocampus/metabolism , Tamoxifen/pharmacology , Tamoxifen/metabolism , Apolipoproteins E/metabolism , Alzheimer Disease/metabolism
3.
Drug Metab Dispos ; 50(10): 1414-1428, 2022 10.
Article in English | MEDLINE | ID: mdl-35878927

ABSTRACT

Cadmium (Cd) exposure is associated with increased Alzheimer's disease (AD) risks. The human Apolipoprotein E (ApoE) gene encodes a lipid-transporting protein that is critical for brain functions. Compared with ApoE2 and E3, ApoE4 is associated with increased AD risk. Xenobiotic biotransformation-related genes have been implicated in the pathogenesis of AD. However, little is known about the effects of Cd, ApoE, and sex on drug-processing genes. We investigated the Cd-ApoE interaction on the transcriptomic changes in the brains and livers of ApoE3/ApoE4 transgenic mice. Cd disrupts the transcriptomes of transporter and drug-processing genes in brain and liver in a sex- and ApoE-genotype-specific manner. Proinflammation related genes were enriched in livers of Cd-exposed ApoE4 males, whereas circadian rhythm and lipid metabolism related genes were enriched in livers of Cd-exposed ApoE3 females. In brains, Cd up-regulated the arachidonic acid-metabolizing Cyp2j isoforms only in the brains of ApoE3 mice, whereas the dysregulation of cation transporters was male-specific. In livers, several direct target genes of the major xenobiotic-sensing nuclear receptor pregnane X receptor were uniquely upregulated in Cd-exposed ApoE4 males. There was a female-specific hepatic upregulation of the steroid hormone-metabolizing Cyp2 isoforms and the bile acid synthetic enzyme Cyp7a1 by Cd exposure. The dysregulated liver transporters were mostly involved in intermediary metabolism, with the most significant response observed in ApoE3 females. In conclusion, Cd dysregulated the brain and liver drug-processing genes in a sex- and ApoE-genotype specific manner, and this may serve as a contributing factor for the variance in the susceptibility to Cd neurotoxicity. SIGNIFICANCE STATEMENT: Xenobiotic biotransformation plays an important role in modulating the toxicity of environmental pollutants. The human ApoE4 allele is the strongest genetic risk factor for AD, and cadmium (Cd) is increasingly recognized as an environmental factor of AD. Very little is known regarding the interactions between Cd exposure, sex, and the genes involved in xenobiotic biotransformation in brain and liver. The present study has addressed this critical knowledge gap.


Subject(s)
Alzheimer Disease , Environmental Pollutants , Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Animals , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism , Apolipoprotein E2/pharmacology , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E3/pharmacology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoproteins E/pharmacology , Arachidonic Acid/metabolism , Bile Acids and Salts/metabolism , Brain/metabolism , Cadmium/toxicity , Environmental Pollutants/metabolism , Female , Genetic Predisposition to Disease , Hormones/metabolism , Hormones/pharmacology , Humans , Liver/metabolism , Male , Mice , Mice, Transgenic , Pregnane X Receptor/metabolism , Protein Isoforms/metabolism , Xenobiotics/metabolism
4.
Environ Toxicol ; 37(2): 335-348, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34741586

ABSTRACT

Cadmium (Cd) is a toxic heavy metal and a significant public health concern. Epidemiological studies suggest that Cd is a potential neurotoxicant, and its exposure is associated with cognitive deficits in children, adults, and seniors. Our previous study has found that adulthood-only Cd exposure can impair cognition in mice. However, few studies have addressed the effects of Cd exposure during adolescence on cognitive behavior in animals later in life. In the present study, we exposed 4-week-old male C57BL/6 mice to 3 mg/L Cd via drinking water for 28 weeks and assessed their hippocampus-dependent learning and memory. Cd did not affect anxiety or locomotor activity in the open field test. However, Cd exposure impaired short-term spatial memory and contextual fear memory in mice. A separate cohort of 4-week-old mice was similarly exposed to Cd for 13 weeks to investigate the potential mechanism of Cd neurotoxicity on cognition. We observed that Cd-treated mice had fewer adult-born cells, adult-born neurons, and a reduced proportion of adult-born cells that differentiated into mature neurons in the subgranular zone of the dentate gyrus. These results suggest that Cd exposure from adolescence to adulthood is sufficient to cause cognitive deficits and impair key processes of hippocampal neurogenesis in mice.


Subject(s)
Cadmium , Memory , Animals , Cadmium/toxicity , Cognition , Hippocampus , Male , Mice , Mice, Inbred C57BL , Neurogenesis
5.
Commun Biol ; 4(1): 1398, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34912029

ABSTRACT

The human Apolipoprotein E4 (ApoE4) variant is the strongest known genetic risk factor for Alzheimer's disease (AD). Cadmium (Cd) has been shown to impair learning and memory at a greater extent in humanized ApoE4 knock-in (ApoE4-KI) mice as compared to ApoE3 (common allele)-KI mice. Here, we determined how cadmium interacts with ApoE4 gene variants to modify the gut-liver axis. Large intestinal content bacterial 16S rDNA sequencing, serum lipid metabolomics, and hepatic transcriptomics were analyzed in ApoE3- and ApoE4-KI mice orally exposed to vehicle, a low dose, or a high dose of Cd in drinking water. ApoE4-KI males had the most prominent changes in their gut microbiota, as well as a predicted down-regulation of many essential microbial pathways involved in nutrient and energy homeostasis. In the host liver, cadmium-exposed ApoE4-KI males had the most differentially regulated pathways; specifically, there was enrichment in several pathways involved in platelet activation and drug metabolism. In conclusion, Cd exposure profoundly modified the gut-liver axis in the most susceptible mouse strain to neurological damage namely the ApoE4-KI males, evidenced by an increase in microbial AD biomarkers, reduction in energy supply-related pathways in gut and blood, and an increase in hepatic pathways involved in inflammation and xenobiotic biotransformation.


Subject(s)
Alzheimer Disease/metabolism , Cadmium/metabolism , Alzheimer Disease/physiopathology , Animals , Disease Models, Animal , Female , Intestine, Large/metabolism , Liver/metabolism , Male , Mice , Mice, Transgenic , Mumps Vaccine
6.
Neurotoxicology ; 81: 127-136, 2020 12.
Article in English | MEDLINE | ID: mdl-33039505

ABSTRACT

Cadmium (Cd) is a heavy metal that is one of the most toxic environmental pollutants throughout the world. We previously reported that Cd exposure impairs olfactory memory in mice. However, the underlying mechanisms for its neurotoxicity for olfactory function are not well understood. Since adult Subventricular zone (SVZ) and Olfactory Bulb (OB) neurogenesis contributes to olfaction, olfactory memory defects caused by Cd may be due to inhibition of neurogenesis. In this study, using bromodeoxyuridine (BrdU) labeling and immunohistochemistry, we found that 0.6 mg/L Cd exposure through drinking water impaired adult SVZ/OB neurogenesis in C57BL/6 mice. To determine if the inhibition of olfactory memory by Cd can be reversed by stimulating adult neurogenesis, we utilized the transgenic caMEK5 mouse strain to conditional stimulate of adult neurogenesis by activating the endogenous ERK5 MAP kinase signaling pathway. This was accomplished by conditionally induced expression of active MEK5 (caMEK5) in adult neural stem/progenitor cells. The caMEK5 mice were exposed to 0.6 mg/L Cd for 38 weeks, and tamoxifen was administered to induce caMEK5 expression and stimulate adult SVZ/OB neurogenesis during Cd exposure. Short-term olfactory memory test and sand-digging based, odor-cued olfactory learning and memory test were conducted after Cd and tamoxifen treatments to examine their effects on olfaction. Here we report that Cd exposure impaired short-term olfactory memory and odor-cued associative learning and memory in mice. Furthermore, the Cd-impaired olfactory memory deficits were rescued by the tamoxifen-induction of caMEK5 expression. This suggests that Cd exposure impairs olfactory function by affecting adult SVZ/OB neurogenesis in mice.


Subject(s)
Behavior, Animal , Lateral Ventricles/enzymology , Memory , Mitogen-Activated Protein Kinase 7/metabolism , Neurogenesis , Olfaction Disorders/prevention & control , Olfactory Bulb/enzymology , Olfactory Perception , Smell , Animals , Association Learning , Cadmium Chloride , Cues , Disease Models, Animal , Enzyme Activation , Female , Lateral Ventricles/pathology , Lateral Ventricles/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Mitogen-Activated Protein Kinase 7/genetics , Odorants , Olfaction Disorders/chemically induced , Olfaction Disorders/enzymology , Olfaction Disorders/physiopathology , Olfactory Bulb/pathology , Olfactory Bulb/physiopathology , Time Factors
7.
Toxicol Sci ; 177(1): 263-280, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32617577

ABSTRACT

Cadmium (Cd) is a heavy metal and an environmental pollutant. However, the full spectrum of its neurotoxicity and the underlying mechanisms are not completely understood. Our previous studies demonstrated that Cd exposure impairs adult hippocampal neurogenesis and hippocampus-dependent memory in mice. This study aims to determine if these adverse effects of Cd exposure can be mitigated by genetically and conditionally enhancing adult neurogenesis. To address this issue, we utilized the transgenic constitutive active MEK5 (caMEK5) mouse strain we previously developed and characterized. This mouse strain enables us to genetically and conditionally activate adult neurogenesis by administering tamoxifen to induce expression of a caMEK5 in adult neural stem/progenitor cells, which stimulates adult neurogenesis through activation of the endogenous extracellular signal-regulated kinase 5 mitogen-activated protein kinase pathway. The caMEK5 mice were exposed to 0.6 mg/l Cd through drinking water for 38 weeks. Once impairment of memory was confirmed, tamoxifen was administered to induce caMEK5 expression and to activate adult neurogenesis. Behavior tests were conducted at various time points to monitor hippocampus-dependent memory. Upon completion of the behavior tests, brain tissues were collected for cellular studies of adult hippocampal neurogenesis. We report here that Cd impaired hippocampus-dependent spatial memory and contextual fear memory in mice. These deficits were rescued by the tamoxifen induction of caMEK5 expression. Furthermore, Cd inhibition of adult hippocampal neurogenesis was also reversed. This rescue experiment provides strong evidence for a direct link between Cd-induced impairments of adult hippocampal neurogenesis and hippocampus-dependent memory.


Subject(s)
Cadmium , Neurogenesis , Animals , Cadmium/toxicity , Female , Hippocampus , Male , Memory , Mice , Mice, Inbred C57BL , Mice, Transgenic
8.
Toxicol Sci ; 173(1): 189-201, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31626305

ABSTRACT

Cadmium (Cd) is a heavy metal of great public health concern. Recent studies suggested a link between Cd exposure and cognitive decline in humans. The ε4 allele, compared with the common ε3 allele, of the human apolipoprotein E gene (ApoE) is associated with accelerated cognitive decline and increased risks for Alzheimer's disease (AD). To investigate the gene-environment interactions (GxE) between ApoE-ε4 and Cd exposure on cognition, we used a mouse model of AD that expresses human ApoE-ε3 (ApoE3-KI [knock-in]) or ApoE-ε4 (ApoE4-KI). Mice were exposed to 0.6 mg/l CdCl2 through drinking water for 14 weeks and assessed for hippocampus-dependent memory. A separate cohort was sacrificed immediately after exposure and used for Cd measurements and immunostaining. The peak blood Cd was 0.3-0.4 µg/l, within levels found in the U.S. general population. All Cd-treated animals exhibited spatial working memory deficits in the novel object location test. This deficit manifested earlier in ApoE4-KI mice than in ApoE3-KI within the same sex and earlier in males than females within the same genotype. ApoE4-KI but not ApoE3-KI mice exhibited reduced spontaneous alternation later in life in the T-maze test. Finally, Cd exposure impaired neuronal differentiation of adult-born neurons in the hippocampus of male ApoE4-KI mice. These data suggest that a GxE between ApoE4 and Cd exposure leads to accelerated cognitive impairment and that impaired adult hippocampal neurogenesis may be one of the underlying mechanisms. Furthermore, male mice were more susceptible than female mice to this GxE effect when animals were young.


Subject(s)
Apolipoprotein E4/metabolism , Cadmium/toxicity , Hazardous Substances/toxicity , Memory/drug effects , Alzheimer Disease , Animals , Apolipoprotein E3 , Behavior, Animal , Brain , Cognition , Disease Models, Animal , Female , Gene-Environment Interaction , Hippocampus , Humans , Male , Maze Learning , Memory Disorders , Mice , Mice, Transgenic
9.
Toxicol Sci ; 171(2): 501-514, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31271426

ABSTRACT

Cadmium (Cd) is an environmental pollutant of considerable interest throughout the world and potentially a neurotoxicant. Our recent data indicate that Cd exposure induces impairment of hippocampus-dependent learning and memory in mice. However, the underlying mechanisms for this defect are not known. The goal of this study was to determine if Cd inhibits adult neurogenesis and to identify underlying signaling pathways responsible for this impairment. Adult hippocampal neurogenesis is a process in which adult neural progenitor/stem cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate functional new neurons in the hippocampus which contributes to hippocampus-dependent learning and memory. However, studies concerning the effects of neurotoxicants on adult hippocampal neurogenesis and the underlying signaling mechanisms are limited. Here, we report that Cd significantly induces apoptosis, inhibits proliferation, and impairs neuronal differentiation in primary cultured aNPCs derived from the SGZ. In addition, the c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase signaling pathways are activated by Cd and contribute to its toxicity. Furthermore, we exposed 8-week-old male C57BL/6 mice to Cd through drinking water for 13 weeks to assess the effects of Cd on adult hippocampal neurogenesis in vivo. Cd treatment reduced the number of 5-week-old adult-born cells in the DG and impaired the differentiation of adult-born hippocampal neurons. These results suggest that Cd exposure impairs adult hippocampal neurogenesis both in vitro and in vivo. This may contribute to Cd-mediated inhibition of hippocampus-dependent learning and memory.

10.
PLoS One ; 14(7): e0219152, 2019.
Article in English | MEDLINE | ID: mdl-31269057

ABSTRACT

Although the biochemical signaling events in area CA1 of the hippocampus underlying memory acquisition, consolidation, retrieval, and extinction have been extensively studied, little is known about the activity dynamics of hippocampal neurons in CA1 during Pavlovian fear conditioning. Here, we use fiber-optic confocal microscopy coupled with the calcium indicator GCaMP6m to monitor neuron activity in freely moving mice during trace fear conditioning. We show that the activity of a group of CA1 neurons increases not only after the stimulus presentations, but also during the stimulus-free trace period when the conditioned mice exhibit a high level of freezing behavior. Therefore, we designate these cells "trace cells". Interestingly, the activity of the trace cells increases in response to the conditioned stimuli during memory retrieval but diminishes during memory extinction. Importantly, the dynamics of neuron activity exhibit a high degree of correlation with the freezing behavior of the mice, suggesting that a neuronal ensemble responsible for encoding the trace fear memory is repeatedly reactivated during memory retrieval and later extinguished during memory extinction.


Subject(s)
CA1 Region, Hippocampal/physiology , Calcium Signaling/physiology , Fear/physiology , Memory/physiology , Animals , CA1 Region, Hippocampal/cytology , Conditioning, Classical/physiology , Indicators and Reagents , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Neurons/physiology
11.
Proc Natl Acad Sci U S A ; 115(12): E2801-E2810, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507229

ABSTRACT

Owing to the prevalence of tumor-associated macrophages (TAMs) in cancer and their unique influence upon disease progression and malignancy, macrophage-targeted interventions have attracted notable attention in cancer immunotherapy. However, tractable targets to reduce TAM activities remain very few and far between because the signaling mechanisms underpinning protumor macrophage phenotypes are largely unknown. Here, we have investigated the role of the extracellular-regulated protein kinase 5 (ERK5) as a determinant of macrophage polarity. We report that the growth of carcinoma grafts was halted in myeloid ERK5-deficient mice. Coincidentally, targeting ERK5 in macrophages induced a transcriptional switch in favor of proinflammatory mediators. Further molecular analyses demonstrated that activation of the signal transducer and activator of transcription 3 (STAT3) via Tyr705 phosphorylation was impaired in erk5-deleted TAMs. Our study thus suggests that blocking ERK5 constitutes a treatment strategy to reprogram macrophages toward an antitumor state by inhibiting STAT3-induced gene expression.


Subject(s)
Macrophages/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Neoplasms/metabolism , Neoplasms/pathology , STAT3 Transcription Factor/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cell Polarity , Humans , Macrophages/pathology , Mice, Inbred C57BL , Mice, Transgenic , Mitogen-Activated Protein Kinase 7/genetics , Phosphorylation , Receptors, Cell Surface/metabolism , STAT3 Transcription Factor/genetics , Tyrosine/metabolism , Xenograft Model Antitumor Assays
12.
Toxicol Sci ; 161(1): 87-102, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29029324

ABSTRACT

Cadmium (Cd) is a heavy metal of high interest to the superfund initiative. Recent epidemiology studies have suggested a possible association between Cd exposure and cognitive as well as olfactory impairments in humans. However, studies in animal models are needed to establish a direct causal relationship between Cd exposure and impairments in cognition and olfaction. This study aims to investigate the toxic effect of Cd on cognition and olfactory function in mice. One group of 8-week-old C57BL/6 male mice was exposed to 3 mg/l Cd (in the form of CdCl2) through drinking water for 20 weeks for behavior tests and final blood Cd concentration analysis. The behavior tests were conducted before, during, and after Cd exposure to analyze the effects of Cd on cognition and olfactory function. Upon completion of behavior tests, blood was collected to measure final blood Cd concentration. Two additional groups of mice were similarly exposed to Cd for 5 or 13 weeks for peak blood Cd concentration measurement. The peak blood Cd concentration was 2.125-2.25 µg/l whereas the final blood Cd concentration was 0.18 µg/l. At this exposure level, Cd impaired hippocampus-dependent learning and memory in novel object location test, T-maze test, and contextual fear memory test. It also caused deficits in short-term olfactory memory and odor-cued olfactory learning and memory. Results in this study demonstrate a direct relationship between Cd exposure and cognitive as well as olfactory impairments in an animal model.


Subject(s)
Behavior, Animal/drug effects , Cadmium/toxicity , Cognitive Dysfunction/chemically induced , Environmental Pollutants/toxicity , Memory/drug effects , Olfaction Disorders/chemically induced , Animals , Cadmium/blood , Disease Models, Animal , Environmental Pollutants/blood , Hippocampus/drug effects , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL
14.
Neurosci Lett ; 661: 108-113, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-28970130

ABSTRACT

Lead is a neurotoxicant of immense public health importance. Epidemiology studies suggest that heavy metal exposure may be associated with an increased risk of cognitive decline, yet few studies to date have assessed the effect of adult lead exposure on cognitive behavior in animal models. Here, we exposed 6-week-old male C57BL/6 mice to 0.2% lead acetate via drinking water for 12 weeks starting at 6 weeks of age and then assessed for deficits in hippocampus-dependent spatial memory and impairment of adult hippocampal neurogenesis. Lead did not cause locomotor deficits or anxiety in the open field test. However, we found that adult, subchronic lead exposure was sufficient to cause deficits in spatial short-term memory and these deficits persisted through at least 2 months post-lead exposure. Furthermore, we observed that lead-treated mice had fewer adult-born, mature neurons in the dentate gyrus of the hippocampus compared to control animals, suggesting that lead exposure during adolescence and adulthood may impair the neuronal differentiation of adult-born cells. These data suggest that adult lead exposure is sufficient to cause persistent deficits in spatial short-term memory and impair key processes in adult hippocampal neurogenesis.


Subject(s)
Hippocampus/parasitology , Memory, Short-Term/drug effects , Neurons/drug effects , Spatial Memory/drug effects , Water/pharmacology , Animals , Cell Count , Dentate Gyrus/drug effects , Hippocampus/cytology , Male , Maze Learning/drug effects , Memory, Short-Term/physiology , Mice, Inbred C57BL , Neurogenesis/drug effects , Neurogenesis/physiology , Spatial Memory/physiology
15.
Neurosci Res ; 118: 13-20, 2017 May.
Article in English | MEDLINE | ID: mdl-28434990

ABSTRACT

Although sleep is strongly implicated in memory consolidation, the molecular basis for the role of sleep in memory is not known. It has been established that the consolidation of hippocampus-dependent memory depends on the activation of the Erk1,2 MAP kinase (MAPK) pathway which activates de novo CRE-mediated transcription and translation, two processes required for memory consolidation pathway. The activation of MAPK during memory formation and its nuclear translocation both depend upon cAMP signals generated by the calmodulin-stimulated adenylyl cyclases, type 1 and type 8 (AC1 and AC8). This signaling pathway undergoes a circadian oscillation in the hippocampus with maximal activation during REM sleep. This data supports the hypothesis that the persistence of long-term memory traces may depend upon the reactivation and circadian oscillation of the cAMP/MAP kinase/CRE transcriptional pathway in tagged neurons which reaches a maximum during REM sleep.


Subject(s)
Circadian Rhythm/physiology , Hippocampus/physiology , Memory Consolidation/physiology , Sleep, REM/physiology , Animals , Signal Transduction/physiology
16.
Sci Rep ; 7: 44989, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28327638

ABSTRACT

Reduction of mitochondrial complex I activity is one of the major hypotheses for dopaminergic neuron death in Parkinson's disease. However, reduction of complex I activity in all cells or selectively in dopaminergic neurons via conditional deletion of the Ndufs4 gene, a subunit of the mitochondrial complex I, does not cause dopaminergic neuron death or motor impairment. Here, we investigated the effect of reduced complex I activity on non-motor symptoms associated with Parkinson's disease using conditional knockout (cKO) mice in which Ndufs4 was selectively deleted in dopaminergic neurons (Ndufs4 cKO). This conditional deletion of Ndufs4, which reduces complex I activity in dopamine neurons, did not cause a significant loss of dopaminergic neurons in substantia nigra pars compacta (SNpc), and there was no loss of dopaminergic neurites in striatum or amygdala. However, Ndufs4 cKO mice had a reduced amount of dopamine in the brain compared to control mice. Furthermore, even though motor behavior were not affected, Ndufs4 cKO mice showed non-motor symptoms experienced by many Parkinson's disease patients including impaired cognitive function and increased anxiety-like behavior. These data suggest that mitochondrial complex I dysfunction in dopaminergic neurons promotes non-motor symptoms of Parkinson's disease and reduces dopamine content in the absence of dopamine neuron loss.


Subject(s)
Dopaminergic Neurons/metabolism , Electron Transport Complex I/genetics , Gene Deletion , Motor Activity , Animals , Anxiety/genetics , Behavior, Animal , Cell Death , Cognitive Dysfunction , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Male , Maze Learning , Mice , Mice, Knockout , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/psychology , Serotonin/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/metabolism
17.
Toxicology ; 380: 30-37, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28163110

ABSTRACT

Cadmium (Cd) is a heavy metal with a long biological half-life in humans and is recognized as a toxic pollutant. Cd is also a potential neurotoxicant and its exposure is associated with olfactory impairment in humans. However, the molecular and cellular mechanisms of Cd neurotoxicity are not well defined. Adult neurogenesis is a process that generates functional neurons from adult neural stem/progenitor cells (aNPCs). It occurs in specific regions of the adult brain including the subventricular zone (SVZ) along the lateral ventricles in mammals, a process that is critical for olfaction. Various external stimuli can modulate adult neurogenesis and the effect of neurotoxicants on adult neurogenesis is just beginning to be elucidated. Since Cd exposure can impair olfaction in humans, the goal of this study is to investigate the effects of Cd on SVZ adult neurogenesis and underlying mechanisms using primary cultured SVZ-aNPCs. In this study, we report that low-level Cd exposure decreases cell number, induces apoptosis, and inhibits cell proliferation in SVZ-aNPCs. Furthermore, Cd exposure significantly increases phosphorylation of c-Jun NH2-terminal kinase (JNK), and p38 MAP kinase in these cells, indicative of JNK and p38 activation. Pharmacological inhibition of JNK or p38 MAPK kinases attenuated Cd-induced cell loss and apoptosis. Cd treatment did not cause cell loss or apoptosis in SVZ-aNPCs prepared from transgenic mice null for the neural-specific JNK3 isoform. These data suggest a critical role for p38 and JNK3 MAP kinases in Cd neurotoxicity. These results are, to our knowledge, the first demonstration that Cd impairs SVZ adult neurogenesis in vitro, which may contribute to its neurotoxicity in olfaction.


Subject(s)
Cadmium/toxicity , Cell Proliferation/drug effects , Mitogen-Activated Protein Kinase 10/metabolism , Neural Stem Cells/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Cells, Cultured , Lateral Ventricles/cytology , Lateral Ventricles/drug effects , Lateral Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitogen-Activated Protein Kinase 10/genetics , Neural Stem Cells/pathology , Phosphorylation , p38 Mitogen-Activated Protein Kinases/genetics
18.
Mol Neurodegener ; 12(1): 14, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28173832

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is characterized by progressive cognitive decline and memory loss. Environmental factors and gene-environment interactions (GXE) may increase AD risk, accelerate cognitive decline, and impair learning and memory. However, there is currently little direct evidence supporting this hypothesis. METHODS: In this study, we assessed for a GXE between lead and ApoE4 on cognitive behavior using transgenic knock-in (KI) mice that express the human Apolipoprotein E4 allele (ApoE4-KI) or Apolipoprotein E3 allele (ApoE3-KI). We exposed 8-week-old male and female ApoE3-KI and ApoE4-KI mice to 0.2% lead acetate via drinking water for 12 weeks and assessed for cognitive behavior deficits during and after the lead exposure. In addition, we exposed a second (cellular) cohort of animals to lead and assessed for changes in adult hippocampal neurogenesis as a potential underlying mechanism for lead-induced learning and memory deficits. RESULTS: In the behavior cohort, we found that lead reduced contextual fear memory in all animals; however, this decrease was greatest and statistically significant only in lead-treated ApoE4-KI females. Similarly, only lead-treated ApoE4-KI females exhibited a significant decrease in spontaneous alternation in the T-maze. Furthermore, all lead-treated animals developed persistent spatial working memory deficits in the novel object location test, and this deficit manifested earlier in ApoE4-KI mice, with female ApoE4-KI mice exhibiting the earliest deficit onset. In the cellular cohort, we observed that the maturation, differentiation, and dendritic development of adult-born neurons in the hippocampus was selectively impaired in lead-treated female ApoE4-KI mice. CONCLUSIONS: These data suggest that GXE between ApoE4 and lead exposure may contribute to cognitive impairment and that impaired adult hippocampal neurogenesis may contribute to these deficits in cognitive behavior. Together, these data suggest a role for GXE and sex differences in AD risk.


Subject(s)
Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Gene-Environment Interaction , Organometallic Compounds/toxicity , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/pathology , Disease Models, Animal , Female , Gene Knock-In Techniques , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic
19.
eNeuro ; 2(2)2015.
Article in English | MEDLINE | ID: mdl-26464972

ABSTRACT

Although there is evidence that adult neurogenesis contributes to the therapeutic efficacy of chronic antidepressant treatment for anxiety and depression disorders, the role of adult neurogenesis in the onset of depression-related symptoms is still open to question. To address this issue, we utilized a transgenic mouse strain in which adult neurogenesis was specifically and conditionally impaired by Nestin-CreER-driven, inducible knockout (icKO) of erk5 MAP kinase in Nestin-expressing neural progenitors of the adult mouse brain upon tamoxifen administration. Here, we report that inhibition of adult neurogenesis by this mechanism is not associated with an increase of the baseline anxiety or depression in non-stressed animals, nor does it increase the animal's susceptibility to depression after chronic unpredictable stress treatment. Our findings indicate that impaired adult neurogenesis does not lead to anxiety or depression.

20.
Neurobiol Aging ; 36(9): 2617-27, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26070241

ABSTRACT

Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron death during aging nor does it contribute to dopamine neuron toxicity in the MPTP model of Parkinson's disease. These findings suggest the existence of alternative mechanisms of dopaminergic neuron death independent of mitochondrial complex I inhibition.


Subject(s)
Dopaminergic Neurons/metabolism , Electron Transport Complex I/genetics , Gene Expression Regulation/genetics , Substantia Nigra/cytology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Age Factors , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Dopamine/metabolism , Dopamine Agents/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/ultrastructure , Dose-Response Relationship, Drug , Electron Transport Complex I/deficiency , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Gene Expression Regulation/drug effects , Levodopa/pharmacology , Male , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Motor Activity/drug effects , Motor Activity/genetics , Oxygen Consumption/drug effects , Oxygen Consumption/genetics , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Substantia Nigra/drug effects , Synaptosomes/drug effects , Synaptosomes/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...