Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 14(1): 5963, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472340

ABSTRACT

After ecological restoration of high and steep slopes in the project disturbed area, soil properties, soil microorganisms, litter types and root types change with the succession of vegetation cover communities. However, the effects of different vegetation successional stages on soil respiration dynamics remain unclear. To elucidate trends and drivers of soil respiration in the context of vegetation succession, we used spatio-temporal alternative applied research. Vegetated concrete-restored slopes (VC) with predominantly herbaceous (GS), shrub (SS), and arborvitae (AS) vegetation were selected, and naturally restored slopes (NS) were used as control. SRS1000 T soil carbon flux measurement system was used to monitor soil respiration rate. The results showed that soil respiration (RS) and fractions of all four treatments showed a single-peak curve, with peaks concentrated in July and August. During the succession of vegetation from herbaceous to arborvitae on VC slopes, RS showed a decreasing trend, and GS was significantly higher than AS by 45%; Compared to NS, RS was 29.81% and 21.56% higher in GS and SS successional stages, respectively, and 27.51% lower in AS stage. RS was significantly and positively correlated with nitrate nitrogen (NO3--N) and microbial biomass nitrogen (MBN), both of which are important factors in regulating RS under vegetation succession. A bivariate model of soil temperature and water content explains the variability of Rs better. Overall, RS was higher than NS in the transition stage and lower than NS in the equilibrium stage of the vegetation community on VC slopes, and the RS decreases gradually with the vegetation succession of artificial ecological restoration slopes.


Subject(s)
Carbon , Soil , Carbon/analysis , Biomass , Nitrogen/analysis , Soil Microbiology , Ecosystem , China
2.
J Environ Manage ; 345: 118810, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37595461

ABSTRACT

Vegetation concrete has been widely applied for the ecological restoration of bare steep slopes in short-term frozen and non-frozen soil regions in China. However, field experiments conducted in seasonally frozen soil regions have revealed decreases in the bulk density, nutrient content and vegetation coverage. This study aimed to clarify the evolution process and mechanism of the engineering properties of vegetation concrete under atmospheric freeze-thaw (F-T) test conditions. The physical, mechanical, and nutrient properties of vegetation concrete were investigated using six F-T cycles (0, 1, 2, 5, 10 and 20) and two initial soil water contents (18 and 22%). The results revealed decreases in the acoustic wave velocity and cohesive forces and an increase in the permeability coefficient of the vegetation concrete owing to F-T action. X-ray diffraction tests indicated that the decreased cohesive force was closely related to the overall decrease in the content of gelling hydration products in the vegetation concrete. Additionally, the contents of NH4+-N, PO43-P and K+ in the vegetation concrete increased, whereas that of NO3--N decreased. The loss rates of these soluble nutrients increased, indicating that the nutrient retention capacity of the vegetation concrete had decreased. Specifically, the decreased nutrient retention capacity was mainly related to the disintegration and fragmentation of larger aggregates due to F-T action. This study provides theoretical support for future research on improving the anti-freezing capability of ecological slope protection substrates in seasonally frozen soil regions.


Subject(s)
Soil , Water , Soil/chemistry , Climate , Engineering , China
3.
Sci Total Environ ; 838(Pt 4): 156446, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660577

ABSTRACT

Under freeze-thaw conditions, the substrates used for ecological protection degrade, which involves decreases in compactness and fertiliser retention ability. As such, our purpose in this study was to use two typical types of activated carbon (AC), wood-based activated carbon (WAC) and coal-based activated carbon (CAC), to enhance the antifrost property of vegetation concrete (VC). We investigated the effects of five different proportions of planting soil weight (0.5 %, 1 %, 2 %, 4 %, and 6 %) mixed in each type of AC to determine their influence on the physical, mechanical, chemical, and biological properties of VC. The VC samples prepared without AC were used as control check (CK). The results showed that AC addition effectively enhanced the nutrient retention and microorganism capacity of VC under freeze-thaw conditions (10 and 60 freeze-thaw cycles). The leaching loss rate of ammonium nitrogen (NH4+-N) decreased to 31.98 % for WAC-6 %-60 from 46.87 % for CK-60, and the microorganism biomass carbon (MBC) increased to 138.54 mg·kg-1 for WAC-6 %-60 from 103.52 mg·kg-1 for CK-60. However, we observed some negative effects, including decreases in the cohesion and internal friction angle. In addition, the water holding capacity and matric suction first increased and then decreased as the proportion of AC mixed in the VC increased, with a turning point of approximately 2 %. By comprehensively considering previous VC eco-restoration technology study results, the recommended mixing amount of AC is 1 %-2 %, which would take full advantage of the benefits of AC and ensure that any negative effect of its use falls within an acceptable range. In addition, WAC generally performed better than CAC, but the aging rate of the former was faster than that of the latter according to scanning electron microscopy (SEM) images and dissolved organic carbon (DOC) analysis. From our results, we concluded that incorporating AC into VC improves the suitability of VC when applied in freeze-thaw conditions.


Subject(s)
Charcoal , Soil , Fertility , Freezing , Nitrogen/metabolism , Soil/chemistry
4.
Ecotoxicology ; 30(5): 996-1003, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33755843

ABSTRACT

A natural compound with the algicidal effect was isolated from the culture medium of Aspergillus sp. SCSIOW2 and was identified as malformin C, which was based on the data of 1H-NMR, 13C-NMR, and ESI-MS. Malformin C exhibited dose-dependent algicidal activities against two strains of noxious red tide algae, Akashiwo sanguinea and Chattonella marina. The activity against A. sanguinea was stronger than that against C. marina (the algicidal activity of 58 and 36% at 50 µM treatment for 2 h, respectively). Morphology changes including perforation, plasmolysis, and fragmentation of algal cells were observed. Malformin C induced a significant increase in ROS level, caused the damage of SOD activity, and led to the massive generation of MDA contents in algae cells. To our knowledge, this is the first report of the cyclic peptide described as an algicidal compound against HABs.


Subject(s)
Harmful Algal Bloom , Peptides, Cyclic , Aspergillus , Fungi , Peptides, Cyclic/toxicity
5.
PeerJ ; 8: e10064, 2020.
Article in English | MEDLINE | ID: mdl-33062447

ABSTRACT

BACKGROUND: To quantitatively evaluate the contribution of plant roots to soil shear strength, the generalized equivalent confining pressure (GECP), which is the difference in confining pressure between the reinforced and un-reinforced soil specimens at the same shear strength, was proposed and considered in terms of the function of plant roots in soil reinforcement. METHODS: In this paper, silt loam soil was selected as the test soil, and the roots of Indigofera amblyantha were chosen as the reinforcing material. Different drainage conditions (consolidation drained (CD), consolidation undrained (CU), and unconsolidated undrained (UU)) were used to analyse the influences of different root distribution patterns (horizontal root (HR), vertical root (VR), and complex root (CR)) and root contents (0.25%, 0.50%, and 0.75%) on the shear strength of soil-root composites. RESULTS: The cohesion (c) values of the soil-root composites varied under different drainage conditions and root contents, while the internal friction angle (φ ) values remain basically stable under different drainage conditions. Under the same root content and drainage conditions, the shear strength indexes ranked in order of lower to higher were HR, VR and CR. The GECP of the soil-root composites with a 0.75% root content was 1.5-2.0 times that with a 0.50% root content and more than 5 times that with a 0.25% root content under the CD and CU conditions. The GECP in reinforced soil followed the sequence of CD > CU > UU. The GECP of the plant roots increased as confining pressure increased under CD and CU conditions while showed a complex change to the confining pressure under the UU condition. CONCLUSION: It was concluded that the evaluation of plant root reinforcing soil based on GECP can be used to measure effectively the influences of roots on soil under different drainage conditions and root distribution patterns.

6.
Sci Rep ; 9(1): 8063, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31147592

ABSTRACT

The overland flow erosion is common and became more serious because of the climate warming inducing more runoff in the Tibet Plateau. The purposes of this study were to evaluate the effects of flow rate, slope gradient, shear stress, stream power, unit stream power and unit energy of water-carrying section on the soil detachment capacity for the soil in the Tibet Plateau of China due to the information is limited. To achieve this aim, laboratory experiments were performed under six flow rates (5, 10, 15, 20, 25 and 30 L min-1) and six slope gradients (8.74%, 17.63%, 26.79%, 36.40%, 46.63 and 57.73%) by using a slope-adjustable steel hydraulic flume (4 m length, 0.4 m width, 0.2 m depth). The results indicated that soil detachment capacity ranged from 0.173 to 6.325 kg m-2 s-1 with 1.972 kg m-2 s-1 on average. The soil detachment capacity increased with power function as the flow rate and the slope gradient augmented (R2 = 0.965, NRMSE = 0.177 and NSE = 0.954). The soil detachment capacity was more influenced by flow rate than by slope gradient in this study. The relation between soil detachment capacity and shear stress, stream power, unit stream power and unit energy of water-carrying section can be described by using the linear function and power function, the power function relationship performed better than the linear function in generally. The stream power exhibits the best performance in describing the soil detachment capacity among shear stress, stream power, unit stream power and unit energy of water-carrying section in this study. The erodibility value in this study was larger than and the critical shear stress was less than those for soil in the eastern China. There has a huge potential for the soil in the Tibet Plateau eroded by the water erosion when enough runoff exiting. More attention should be payed to the water erosion process and mechanism in the Tibet Plateau area in the future.

7.
Huan Jing Ke Xue ; 39(6): 2615-2623, 2018 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-29965616

ABSTRACT

In order to understand the characteristics of the distribution of sediment total phosphorus (TP) and phosphorus fractions in the mainstream sediments in the Three Gorges Reservoir (TGR) after impounding the water level to 175 m, 13 surface sediment samples were collected from the Wujiang to Maoping sections in October 2010. The physico-chemical properties, including organic matter content, particle grain size distribution, and major mineral analysis, as well as total phosphorus and its fractions in the sediment, were determined. Moreover, the relationships among phosphorus fractions, organic matter contents, and particle grain size were discussed, and the effect of the impoundment on sediment phosphorus accumulation and bioavailability was also evaluated. Results indicated that the sediment organic matter content of the TGR was between 7.79 g·kg-1 and 55.63 g·kg-1, and the main mineral components were chlorite, illite, and quartz. The sediments were dominated with clayey silt with a median diameter (d50) ranging from 3.84 µm to 23.65 µm. The measured total phosphorus content of the sediments were between 557.06 g·kg-1 and 837.92 g·kg-1, and the total phosphorus enrichment index of each sampling site is greater than 1, demonstrating a potential risk for phosphorus pollution. The calcium bound phosphorus (Ca-P) and the reductant soluble phosphorus (Oc-P) were the dominant sediment phosphorus fractions, while the exchangeable phosphorus (Ex-P), the iron bound phosphorus (Fe-P), and aluminum bound phosphorus (Al-P) content were relatively low. Bioavailable P only accounts for 2%-8% of the total phosphorus content. When referring to previous studies, the sediment particle size tended to be smaller and the content of comparatively easy-to-weather minerals slightly increased with the increase of the impoundment water level. However, the increase in the impoundment water level did not result in a significant increase tendency in sediment TP content. In the future, a reduction in sediment input and a decline in sediment particle size may facilitate the accumulation of phosphorus in the sediments in the broad valley section of the TGR. Moreover, large scale dry-wet alternation in the water level fluctuation zone and resuspension of floating mud near the dam both potentially impact the bioavailability of phosphorus in the sediments.

8.
Molecules ; 22(8)2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28777319

ABSTRACT

Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW3, resulting in significant changes of the secondary metabolites. One new diphenylether-O-glycoside (diorcinol 3-O-α-D-ribofuranoside), along with seven known compounds, were isolated from the culture treated with a combination of histone deacetylase inhibitor (suberohydroxamic acid) and DNA methyltransferase inhibitor (5-azacytidine). Compounds 2 and 4 exhibited significant biomembrane protective effect of erythrocytes. 2 also showed algicidal activity against Chattonella marina, a bloom forming alga responsible for large scale fish deaths.


Subject(s)
Aspergillus/growth & development , Azacitidine/pharmacology , Glucosides , Herbicides , Histone Deacetylase Inhibitors/pharmacology , Stramenopiles/growth & development , Aquatic Organisms , Aspergillus/isolation & purification , Glucosides/chemistry , Glucosides/isolation & purification , Glucosides/pharmacology , Herbicides/chemistry , Herbicides/metabolism , Herbicides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...