Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(16): 13767-13773, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29608047

ABSTRACT

Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.

2.
Adv Mater ; 29(18)2017 May.
Article in English | MEDLINE | ID: mdl-28256770

ABSTRACT

Solar cell generates electrical energy from light one via pulling excited carrier away under built-in asymmetry. Doped semiconductor with antireflection layer is general strategy to achieve this including crystalline silicon (c-Si) solar cell. However, loss of extra energy beyond band gap and light reflection in particular wavelength range is known to hinder the efficiency of c-Si cell. Here, it is found that part of short wavelength sunlight can be converted into polarization electrical field, which strengthens asymmetry in organic-c-Si heterojunction solar cell through molecule alignment process. The light harvested by organometal trihalide perovskite nanoparticles (NPs) induces molecular alignment on a conducting polymer, which generates positive electrical surface field. Furthermore, a "field-effect solar cell" is successfully developed and implemented by combining perovskite NPs with organic/c-Si heterojunction associating with light-induced molecule alignment, which achieves an efficiency of 14.3%. In comparison, the device with the analogous structure without perovskite NPs only exhibits an efficiency of 12.7%. This finding provides a novel concept to design solar cell by sacrificing part of sunlight to provide "extra" asymmetrical field continuously as to drive photogenerated carrier toward respective contacts under direct sunlight. Moreover, it also points out a method to combine promising perovskite material with c-Si solar cell.

3.
ACS Nano ; 10(10): 9411-9419, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27617584

ABSTRACT

Silicon (Si) is a good photon absorption material for photoelectrochemical (PEC) conversion. Recently, the relatively low photovoltage of Si-based PEC anode is one of the most significant factors limiting its performance. To achieve a high photovoltage in PEC electrode, both a large barrier height and high-quality surface passivation of Si are indispensable. However, it is still challenging to induce a large band bending and passivate Si surface simultaneously in Si-based PEC photoanodes so far, which hinders their performance. Here, we develop a simple Si/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) heterojunction with large band banding and excellent surface passiviation for efficient PEC conversion. A chemically modified PEDOT:PSS film acts as both a surface passiviation layer and an effective catalyst simultaneously without sacrificing band bending level. A record photovoltage for Si-based PEC photoanodes as high as 657 mV is achieved via optimizing the PEDOT:PSS film fabrication process. The density of electron state (DOS) measurement is utilized to probe the passivation quality of the organic/inorganic heterojunction, and a low DOS is found in the Si/PEDOT:PSS heterojunction, which is in accordance with the photovoltage results. The low-temperature solution-processed Si/organic heterojunction photoanode provides a high photovoltage, exhibiting the potential to be the next-generation economical photoanode in PEC applications.

4.
ACS Nano ; 10(1): 704-12, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26695703

ABSTRACT

Silicon-organic solar cells based on conjugated polymers such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) on n-type silicon (n-Si) attract wide interest because of their potential for cost-effectiveness and high-efficiency. However, a lower barrier height (Φb) and a shallow built in potential (Vbi) of Schottky junction between n-Si and PEDOT: PSS hinders the power conversion efficiency (PCE) in comparison with those of traditional p-n junction. Here, a strong inversion layer was formed on n-Si surface by inserting a layer of 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HAT-CN), resulting in a quasi p-n junction. External quantum efficiency spectra, capacitance-voltage, transient photovoltage decay and minority charge carriers life mapping measurements indicated that a quasi p-n junction was built due to the strong inversion effect, resulting in a high Φb and Vbi. The quasi p-n junction located on the front surface region of silicon substrates improved the short wavelength light conversion into photocurrent. In addition, a derivative perylene diimide (PDIN) layer between rear side of silicon and aluminum cathodes was used to block the holes from flowing to cathodes. As a result, the device with PDIN layer also improved photoresponse at longer wavelength. A champion PCE of 14.14% was achieved for the nanostructured silicon-organic device by combining HAT-CN and PDIN layers. The low temperature and simple device structure with quasi p-n junction promises cost-effective high performance photovoltaic techniques.

5.
ACS Appl Mater Interfaces ; 7(43): 24136-41, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26468669

ABSTRACT

Graphene-based photodetectors have attracted wide interest due to their high-speed, wide-band photodetection and potential as highly energy-efficient integrated devices. However, the inherently low-absorption cross-section and nonselective spectra response hinder its utilization as a high-performance photodetector. Here, we report a solution-processed and high-spectral-selectivity photodetector based on a gold nanorods (Au NRs)-graphene heterojunction with near-infrared (NIR) detection. Au NRs are used as a subwavelength scattering source, and nanoantennas with wide light absorption range from ultraviolet to near-infrared via tuning their geometry. Photons couple into Au NRs, exciting resonant plasmas and generating hot carriers that pump into graphene, resulting in selective NIR photodetection. A flexible NIR photodetector is also demonstrated based on this simple structure. Au NRs can achieve variable resonance frequencies by the design of different aspect ratios as nanoantennae for graphene, which promises the selective amplifying of the photoresponsivity and enables highly specific detection.

6.
ACS Appl Mater Interfaces ; 7(46): 25601-7, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-25844486

ABSTRACT

Silicon (Si) is an important material in photoelectrochemical (PEC) water splitting because of its good light-harvesting capability as well as excellent charge-transport properties. However, the shallow valence band edge of Si hinders its PEC performance for water oxidation. Generally, thanks to their deep valence band edge, metal oxides are incorporated with Si to improve the performance, but they also decrease the transportation of carriers in the electrode. Here, we integrated a ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] layer with Si to increase the photovoltage as well as the saturated current density. Because of the prominent ferroelectric property from P(VDF-TrFE), the Schottky barrier between Si and the electrolyte can be facially tuned by manipulating the poling direction of the ferroelectric domains. The photovoltage is improved from 460 to 540 mV with a forward-poled P(VDF-TrFE) layer, while the current density increased from 5.8 to 12.4 mA/cm(2) at 1.23 V bias versus reversible hydrogen electrode.

7.
ACS Appl Mater Interfaces ; 6(23): 20670-5, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25405590

ABSTRACT

Organic electronics have gained widespread attention due to their flexibility, lightness, and low-cost potential. It is attractive due to the possibility of large-scale roll-to-roll processing. However, organic electronics require additional development before they can be made commercially available and fully integrated into everyday life. To achieve feasibility for commercial use, these devices must be biocompatible and flexible while maintaining high performance. In this study, biocompatible silk fibroin (SF) was integrated with a mesh of silver nanowires (AgNWs) to build up flexible organic solar cells with maximum power conversion efficiency of up to 6.62%. The AgNW/SF substrate exhibits a conductivity of ∼11.0 Ω/sq and transmittance of ∼80% in the visible light range. These substrates retained their conductivity, even after being bent and unbent 200 times; this surprising ability was attributed to its embedded structure and the properties of the specific SF materials used. To contrast, indium tin oxide on synthetic plastic substrate lost its conductivity after the much less rigid bending. These lightweight and silk-based organic solar cells pave the way for future biocompatible interfaces between wearable electronics and human skin.


Subject(s)
Biocompatible Materials/chemistry , Fibroins/chemistry , Nanowires/chemistry , Solar Energy , Electronics , Humans , Silk/chemistry , Silver/chemistry , Tin Compounds/chemistry
8.
Nanotechnology ; 24(48): 484012, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24196730

ABSTRACT

An in situ cross-linked three-dimensional polymer network has been developed to passivate ZnO nanoparticles as an electron transporting layer (ETL) to improve the performance of inverted organic solar cells. The passivated ZnO ETL-based devices achieve efficiencies of 3.26% for poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and 7.37% for poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) devices compared with 2.58% and 6.67% for the control devices respectively. The origin of the improvement is studied by investigating the influence of the transport barrier, morphology and recombination. Atomic force microscopy (AFM), photoluminescence (PL) and transient photocurrent (TPC) measurements prove the boosted performance originates from the improved film-forming quality as well as passivated defects in the ZnO film, decreasing the trap-assisted recombination rather than giving better energy alignment between the active layer and the ZnO interlayer.

SELECTION OF CITATIONS
SEARCH DETAIL
...