Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 831
Filter
1.
Chemistry ; : e202401727, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979891

ABSTRACT

The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438 ± 204%), tensile strength (23.5 ± 1.7 MPa), and outstanding elastic recovery (>88%).

2.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955379

ABSTRACT

This study evaluated the treatment efficiency of two selected fillers and their combination for improving the water quality of aquaculture wastewater using a packed bed biofilm reactor (PBBR) under various process conditions. The fillers used were nanosheet (NS), activated carbon (AC), and a combination of both. The results indicated that the use of combined fillers and the hydraulic retention time (HRT) of 4 h significantly enhanced water quality in the PBBR. The removal rates of chemical oxygen demand, NO2-─N, total suspended solids(TSS), and chlorophyll a were 63.55%, 74.25%, 62.75%, and 92.85%, respectively. The microbiota analysis revealed that the presence of NS increased the abundance of microbial phyla associated with nitrogen removal, such as Nitrospirae and Proteobacteria. The difference between the M1 and M2 communities was minimal. Additionally, the microbiota in different PBBR samples displayed similar preferences for carbon sources, and carbohydrates and amino acids were the most commonly utilized carbon sources by microbiota. These results indicated that the combination of NS and AC fillers in a PBBR effectively enhanced the treatment efficiency of aquaculture wastewater when operated at an HRT of 4 h. The findings provide valuable insights into optimizing the design of aquaculture wastewater treatment systems.


Subject(s)
Aquaculture , Biofilms , Bioreactors , Wastewater , Water Purification , Biofilms/growth & development , Bioreactors/microbiology , Water Purification/methods , Wastewater/microbiology , Wastewater/chemistry , Nitrogen/metabolism , Charcoal/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/growth & development , Biological Oxygen Demand Analysis , Microbiota , Waste Disposal, Fluid/methods , Water Quality
3.
Article in English | MEDLINE | ID: mdl-38995188

ABSTRACT

A Gram-negative, ellipsoidal to short-rod-shaped, motile bacterium was isolated from Beijing's urban air. The isolate exhibited the closest kinship with Noviherbaspirillum aerium 122213-3T, exhibiting 98.4 % 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that it clustered closely with N. aerium 122213-3T, thus forming a distinct phylogenetic lineage within the genus Noviherbaspirillum. The average nucleotide identity and digital DNA-DNA hybridization values between strain I16B-00201T and N. aerium 122213-3T were 84.6 and 29.4 %, respectively. The respiratory ubiquinone was ubiquinone 8. The major fatty acids (>10 %) were summed feature 3 (C16:1ω6c/C16:1ω7c, 43.3 %), summed feature 8 (C18:1ω7c/C18:1ω6c, 15.9 %) and C12:0 (11.0 %). The polyamine profile showed putrescine as the predominant compound. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unknown lipids and unknown phosphatidylaminolipids. The phenotypic, phylogenetic and chemotaxonomic results consistently supported that strain I16B-00201T represented a novel species of the genus Noviherbaspirillum, for which the name Noviherbaspirillum album sp. nov. is proposed, with I16B-00201T (=CPCC 100848T=KCTC 52095T) designated as the type strain. Its DNA G+C content is 59.4 mol%. Pan-genome analysis indicated that some Noviherbaspirillum species possess diverse nitrogen and aromatic compound metabolism pathways, suggesting their potential value in pollutant treatment.


Subject(s)
Air Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ubiquinone , RNA, Ribosomal, 16S/genetics , Beijing , DNA, Bacterial/genetics , Fatty Acids/analysis , Phospholipids/analysis
4.
BMC Geriatr ; 24(1): 587, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982345

ABSTRACT

BACKGROUND: Trailing parents, a distinct group emerging from China's rapid social change and urbanization, are experiencing migration in old age, posing challenges for their social adaptation. Existing research has mainly focused on the hardships faced by this group, but few studies have focused on how they cope with change and achieve some degree of successful social adaptation. This study aimed to understand the coping and social adaptation process of trailing parents in China. METHODS: This study used a qualitative research approach. A total of 24 trailing parents were invited to participate in a semi-structured interview and share their experiences and efforts to cope with the many challenges. Kumpfer's resilience framework was used as the theoretical framework for the study design, data collection, and data analysis. RESULTS: This study identified several intra-family and community stressors that trailing parents may face when moving to a new environment and uncovered five key resilience characteristics that may be triggered or fostered in the presence of these stressors, including physical fitness, psychological stability, open-mindedness, learning ability, and nurturing hobbies. Individuals with resilience traits have been observed to engage in positive cognitive processing and transform the new environment. Consistent with Kumpfer's resilience framework, this study revealed the dynamics of the stressors faced by trailing parents in the new environments, the role of resilience characteristics, and the critical influence of social support in shaping the interplay between the individual and the environment that enabled them to adapt positively. CONCLUSIONS: This study highlights the importance of fostering resilience traits and leveraging positive coping mechanisms to facilitate a smoother adaptation process for trailing parents. Meanwhile, there is an urgent need to focus on creating opportunities that strengthen their social support networks.


Subject(s)
Adaptation, Psychological , Parents , Resilience, Psychological , Humans , China , Male , Female , Parents/psychology , Middle Aged , Adaptation, Psychological/physiology , Social Adjustment , Aged , Qualitative Research , Social Support
5.
PeerJ ; 12: e17520, 2024.
Article in English | MEDLINE | ID: mdl-38887619

ABSTRACT

Habitual dietary changes have the potential to induce alterations in the host's gut microbiota. Mandarin fish (Siniperca chuatsi), an aquatic vertebrate species with distinct feeding habits, were fed with natural feeds (NF) and artificial feeds (AF) to simulate the effects of natural and processed food consumption on host gut microbiota assemblages. The results showed that the alpha diversity index was reduced in the AF diet treatment, as lower abundance and diversity of the gut microbiota were observed, which could be attributed to the colonized microorganisms of the diet itself and the incorporation of plant-derived proteins or carbohydrates. The ß-diversity analysis indicated that the two dietary treatments were associated with distinct bacterial communities. The AF diet had a significantly higher abundance of Bacteroidota and a lower abundance of Actinomycetota, Acidobacteriota, and Chloroflexota compared to the NF group. In addition, Bacteroidota was the biomarker in the gut of mandarin fish from the AF treatment, while Acidobacteriota was distinguished in the NF treatments. Additionally, the increased abundance of Bacteroidota in the AF diet group contributed to the improved fermentation and nutrient assimilation, as supported by the metabolic functional prediction and transcriptome verification. Overall, the present work used the mandarin fish as a vertebrate model to uncover the effects of habitual dietary changes on the evolution of the host microbiota, which may provide potential insights for the substitution of natural foods by processed foods in mammals.


Subject(s)
Animal Feed , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Animals , Animal Feed/analysis , Diet/veterinary , Fishes/microbiology , Food, Processed
6.
J Clin Invest ; 134(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828728

ABSTRACT

The macula densa (MD) is a distinct cluster of approximately 20 specialized kidney epithelial cells that constitute a key component of the juxtaglomerular apparatus. Unlike other renal tubular epithelial cell populations with functions relating to reclamation or secretion of electrolytes and solutes, the MD acts as a cell sensor, exerting homeostatic actions in response to sodium and chloride changes within the tubular fluid. Electrolyte flux through apical sodium transporters in MD cells triggers release of paracrine mediators, affecting blood pressure and glomerular hemodynamics. In this issue of the JCI, Gyarmati and authors explored a program of MD that resulted in activation of regeneration pathways. Notably, regeneration was triggered by feeding mice a low-salt diet. Furthermore, the MD cells showed neuron-like properties that may contribute to their regulation of glomerular structure and function. These findings suggest that dietary sodium restriction and/or targeting MD signaling might attenuate glomerular injury.


Subject(s)
Regeneration , Animals , Regeneration/drug effects , Mice , Kidney/metabolism , Humans , Diet, Sodium-Restricted , Juxtaglomerular Apparatus/metabolism , Sodium Chloride, Dietary , Signal Transduction , Kidney Glomerulus/metabolism
7.
Small ; : e2311507, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856024

ABSTRACT

The immunosuppressive characteristics and acquired immune resistance can restrain the therapy-initiated anti-tumor immunity. In this work, an antibody free programmed death receptor ligand 1 (PD-L1) downregulator (designated as CeSe) is fabricated to boost photodynamic activated immunotherapy through cyclin-dependent kinase 5 (CDK5) inhibition. Among which, FDA approved photosensitizer of chlorin e6 (Ce6) and preclinical available CDK5 inhibitor of seliciclib (Se) are utilized to prepare the nanomedicine of CeSe through self-assembly technique without drug excipient. Nanoscale CeSe exhibits an increased stability and drug delivery efficiency, contributing to intracellular production of reactive oxygen species (ROS) for robust photodynamic therapy (PDT). The PDT of CeSe can not only suppress the primary tumor growth, but also induce the immunogenic cell death (ICD) to release tumor associated antigens. More importantly, the CDK5 inhibition by CeSe can downregulate PD-L1 to re-activate the systemic anti-tumor immunity by decreasing the tumor immune escape and therapy-induced acquired immune resistance. This work provides an antibody free strategy to activate systemic immune response for metastatic tumor treatment, which may accelerate the development of translational nanomedicine with sophisticated mechanism.

8.
Neurochem Res ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850437

ABSTRACT

Tri(1,3-dichloro-2-propyl)phosphate (TDCPP) is one of the most widely used organophosphorus flame retardants in consumer products. TDCPP has been confirmed to be neurotoxic, but its mechanism has not been clarified and may be related to mitophagy. AMBRA1 can promote neurological autophagy, but whether AMBRA1 is involved in the mechanism of TDCPP-induced neurotoxicity has not been elucidated. In this study, the optimal neuronal damage model was established by exposing mice hippocampal neurons to TDCPP. Furthermore, on the basis of this model, siRNA was used to knock down AMBRA1. Combined with qRT-PCR and Western blot techniques, we identified AMBRA1-mediated mitophagy-induced neuronal damage in vitro mechanism. The experimental results indicated that TDCPP treatment for 24 h led to a decrease in the cell viability of mouse hippocampal neurons, causing neuronal damage. Meanwhile, TDCPP exposure increased autophagy marker proteins p62 and LC3B, and down-regulated mitochondrial DNA ND1 damage and TOMM20 protein, suggesting that TDCPP exposure promoted mitophagy. In addition, TDCPP exposure led to changes in the expression of AMBRA1 and the key factors of mitophagy, FUNDC1, PINK1, and PARKIN, whereas mitophagy was inhibited after knockdown of AMBRA1. The research results indicated that exposure to TDCPP induced neuronal damage and promoted mitophagy. The mechanism may be that AMBRA1 promoted mitophagy in neuronal cells through the PARKIN-dependent/non-dependent pathway. This study revealed the toxic effects of TDCPP on the nervous system and its potential molecular mechanisms, which provided important clues for further understanding the mechanism of action of AMBAR1-mediated mitophagy.

9.
Sci Total Environ ; 934: 173158, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735329

ABSTRACT

Soil respiration (Rs) is a major component of the global carbon (C) cycle and is influenced by the availability of nutrients such as phosphorus (P). However, the response of Rs to P addition in P-limited subtropical forest ecosystems and the underlying mechanisms remain poorly understood. To address this, we conducted a P addition experiment (50 kg P ha-1 yr-1) in a subtropical Chinese fir (Cunninghamia lanceolata) plantation forest. We separated Rs into heterotrophic respiration (Rh), root respiration (Rr), and mycorrhizal hyphal respiration (Rm), and quantified soil properties, microbial biomass (phospholipid fatty acid, PLFA), fungal community composition (ITS), and the activity of extracellular enzymes. Phosphorus addition significantly increased Rs and Rh, but decreased Rr and did not influence Rm. Further, P addition increased fungal, bacterial, and total PLFAs, and phenol oxidase activity. Conversely, P application decreased root biomass and did not alter the relative abundance of symbiotrophic fungi. Phosphorus enrichment therefore enhances soil C emissions by promoting organic matter decomposition by heterotrophic activity, rather than via increases in root or mycorrhizal respiration. This advances our mechanistic understanding of the relationship between fertility and soil respiration in subtropical forests, with implications for predicting soil C emissions under global change.


Subject(s)
Forests , Phosphorus , Plant Roots , Soil Microbiology , Phosphorus/metabolism , Plant Roots/metabolism , Soil/chemistry , Heterotrophic Processes , Mycorrhizae/physiology , Cunninghamia , China , Biomass , Carbon Cycle , Fertilizers
10.
Ann Med ; 56(1): 2346537, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696817

ABSTRACT

BACKGROUND: To investigate the effectiveness of the intervention with critical value management and push short messaging service (SMS), and to determine improvement in the referral rate of patients with positive hepatitis C antibody (anti-HCV). METHODS: No intervention was done for patients with positive anti-HCV screening results from 1 January 2015 to 31 October 2021. Patients with positive anti-HCV results at our hospital from 1 November 2021 to 31 July 2022 were informed vide critical value management and push SMS. For inpatients, a competent physician was requested to liaise with the infectious disease physician for consultation, and patients seen in the OPD (outpatient department) were asked to visit the liver disease clinic. The Chi-square correlation test, one-sided two-ratio test and linear regression were used to test the relationship between intervention and referral rate. RESULTS: A total of 638,308 cases were tested for anti-hepatitis C virus (HCV) in our hospital and 5983 of them were positive. 51.8% of the referred patients were aged 18-59 years and 10.8% were aged ≥75 years. The result of Chi-square correlation test between intervention and referral was p = .0000, p < .05. One-sided two-ratio test was performed for statistics of pre-intervention referral rate (p1) and post-intervention referral rate (p2). Normal approximation and Fisher's exact test for the results obtained were 0.000, p < .05, and the alternative hypothesis p1 - p2 < 0 was accepted. The linear regression equation was referral = 0.1396 × intervention + 0.3743, and the result model p = 8.79e - 09, p < .05. The model was significant, and the coefficient of intervention was 0.1396. CONCLUSIONS: The interventions of critical value management and push SMS were correlated with the referral rate of patients with positive anti-HCV.


Subject(s)
Hepatitis C , Referral and Consultation , Humans , Referral and Consultation/statistics & numerical data , Middle Aged , Male , Female , Adult , Aged , Adolescent , Hepatitis C/drug therapy , Hepatitis C/diagnosis , Young Adult , Hepatitis C Antibodies/blood , Text Messaging , Quality Improvement
11.
Front Immunol ; 15: 1342350, 2024.
Article in English | MEDLINE | ID: mdl-38720901

ABSTRACT

Dyslipidemia is the most prevalent independent risk factor for patients with chronic kidney disease (CKD). Lipid-induced NLRP3 inflammasome activation in kidney-resident cells exacerbates renal injury by causing sterile inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox balance; however, the exact role of Nrf2 signaling and its regulation of the NLRP3 inflammasome in hyperlipidemia-induced kidney injury are poorly understood. In this study, we demonstrated that activation of the mtROS-NLRP3 inflammasome pathway is a critical contributor to renal tubular epithelial cell (RTEC) apoptosis under hyperlipidemia. In addition, the Nrf2/ARE signaling pathway is activated in renal tubular epithelial cells under hyperlipidemia conditions both in vivo and in vitro, and Nrf2 silencing accelerated palmitic acid (PA)-induced mtROS production, mitochondrial injury, and NLRP3 inflammasome activation. However, the activation of Nrf2 with tBHQ ameliorated mtROS production, mitochondrial injury, NLRP3 inflammasome activation, and cell apoptosis in PA-induced HK-2 cells and in the kidneys of HFD-induced obese rats. Furthermore, mechanistic studies showed that the potential mechanism of Nrf2-induced NLRP3 inflammasome inhibition involved reducing mtROS generation. Taken together, our results demonstrate that the Nrf2/ARE signaling pathway attenuates hyperlipidemia-induced renal injury through its antioxidative and anti-inflammatory effects through the downregulation of mtROS-mediated NLRP3 inflammasome activation.


Subject(s)
Epithelial Cells , Hyperlipidemias , Inflammasomes , Kidney Tubules , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , NF-E2-Related Factor 2/metabolism , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Hyperlipidemias/metabolism , Hyperlipidemias/complications , Hyperlipidemias/immunology , Epithelial Cells/metabolism , Rats , Humans , Kidney Tubules/pathology , Kidney Tubules/metabolism , Male , Cell Line , Apoptosis , Antioxidant Response Elements , Mitochondria/metabolism , Disease Models, Animal , Rats, Sprague-Dawley
13.
CNS Neurosci Ther ; 30(5): e14738, 2024 05.
Article in English | MEDLINE | ID: mdl-38702933

ABSTRACT

INTRODUCTION: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS: Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS: PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION: Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.


Subject(s)
Exosomes , Mice, Inbred C57BL , Microglia , Parkinson Disease , Vacuolar Proton-Translocating ATPases , alpha-Synuclein , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , alpha-Synuclein/metabolism , Exosomes/metabolism , Lysosomes/metabolism , Microglia/metabolism , Microglia/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics
14.
Heliyon ; 10(10): e30763, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770315

ABSTRACT

Accurate delineation of Gross Tumor Volume (GTV) is crucial for radiotherapy. Deep learning-driven GTV segmentation technologies excel in rapidly and accurately delineating GTV, providing a basis for radiologists in formulating radiation plans. The existing 2D and 3D segmentation models of GTV based on deep learning are limited by the loss of spatial features and anisotropy respectively, and are both affected by the variability of tumor characteristics, blurred boundaries, and background interference. All these factors seriously affect the segmentation performance. To address the above issues, a Layer-Volume Parallel Attention (LVPA)-UNet model based on 2D-3D architecture has been proposed in this study, in which three strategies are introduced. Firstly, 2D and 3D workflows are introduced in the LVPA-UNet. They work in parallel and can guide each other. Both the fine features of each slice of 2D MRI and the 3D anatomical structure and spatial features of the tumor can be extracted by them. Secondly, parallel multi-branch depth-wise strip convolutions adapt the model to tumors of varying shapes and sizes within slices and volumetric spaces, and achieve refined processing of blurred boundaries. Lastly, a Layer-Channel Attention mechanism is proposed to adaptively adjust the weights of slices and channels according to their different tumor information, and then to highlight slices and channels with tumor. The experiments by LVPA-UNet on 1010 nasopharyngeal carcinoma (NPC) MRI datasets from three centers show a DSC of 0.7907, precision of 0.7929, recall of 0.8025, and HD95 of 1.8702 mm, outperforming eight typical models. Compared to the baseline model, it improves DSC by 2.14 %, precision by 2.96 %, and recall by 1.01 %, while reducing HD95 by 0.5434 mm. Consequently, while ensuring the efficiency of segmentation through deep learning, LVPA-UNet is able to provide superior GTV delineation results for radiotherapy and offer technical support for precision medicine.

15.
Transl Oncol ; 45: 101988, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733642

ABSTRACT

Radiation is one of the standard therapies for pediatric high-grade glioma (pHGG), of which the prognosis remains poor. To gain an in-depth understanding of biological consequences beyond the classic DNA damage, we treated 9 patient-derived orthotopic xenograft (PDOX) models, including one with DNA mismatch repair (MMR) deficiency, with fractionated radiations (2 Gy/day x 5 days). Extension of survival time was noted in 5 PDOX models (P < 0.05) accompanied by γH2AX positivity in >95 % tumor cells in tumor core and >85 % in the invasive foci as well as ∼30 % apoptotic and mitotic catastrophic cell death. The model with DNA MMR (IC-1406HGG) was the most responsive to radiation with a reduction of Ki-67(+) cells. Altered metabolism, including mitochondria number elevation, COX IV activation and reactive oxygen species accumulation, were detected together with the enrichment of CD133+ tumor cells. The latter was caused by the entry of quiescent G0 cells into cell cycle and the activation of self-renewal (SOX2 and BMI1) and epithelial mesenchymal transition (fibronectin) genes. These novel insights about the cellular and molecular mechanisms of fractionated radiation in vivo should support the development of new radio-sensitizing therapies.

16.
Article in English | MEDLINE | ID: mdl-38619765

ABSTRACT

We studied 34 isolates of Tigecycline-Non-Susceptible A. baumannii (TNAB) obtained from clinical specimens at a large tertiary care hospital in Chongqing, China. These 34 strains belonged to 8 different clones including ST195 (35.3%) and ST208 (17.7%). EBURST analysis found that these 8 ST types belonged to the Clonal Complex 92. Tigecycline resistance-associated genes adeR, adeS, adeL, adeN, rrf, rpsJ, and trm were detected in most strains. The expression level of the resistance-nodulation-cell division (RND) efflux pumps in TNAB strains was higher than the reference strain ATCC19606. 58.8% of strains had a decrease in the tigecycline minimum inhibitory concentration (MIC) after the addition of carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The TNAB strains in our hospital have a high degree of affinity and antibiotic resistance. Regular surveillance should be conducted to prevent outbreaks of TNAB epidemics.

17.
Int Immunopharmacol ; 133: 112036, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38640713

ABSTRACT

BACKGROUND: Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS: The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS: 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1ß). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION: Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.


Subject(s)
Berberine , Computational Biology , Lipocalin-2 , NF-kappa B , Network Pharmacology , Sepsis-Associated Encephalopathy , Animals , Humans , Male , Mice , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Berberine/pharmacology , Berberine/therapeutic use , Disease Models, Animal , Down-Regulation , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Lipocalin-2/genetics , Lipocalin-2/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Neuroinflammatory Diseases/drug therapy , NF-kappa B/metabolism , Protein Interaction Maps , Sepsis/drug therapy , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Signal Transduction/drug effects
18.
Medicine (Baltimore) ; 103(16): e37848, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640332

ABSTRACT

OBJECTIVE: To investigate the clinical efficacy of fire acupuncture (FA) on plaque psoriasis (PP), exploring its suitable syndrome types, in order to achieve better therapeutic effects, accelerate the possibility of psoriasis skin lesion recovery, and provide assistance for clinical treatment. METHODS: A total of 8 patients with PP aged between 18 and 60 years were recruited and treated with FA once a week, and the lesion area and severity index (PASI), visual analog scale and pruritus were measured before, 2, 4 and 8 weeks after treatment and at the follow-up period (week 12), respectively. Visual analog scale, and dermoscopy were used for assessment. RESULTS: All patients showed improvement in pruritus after 1 FA treatment, and lesions were reduced to varying degrees after 2 weeks. Except for patients 5 and 8, who only achieved effective results due to severe disease, all other patients with psoriasis achieved significant results at 8 weeks after treatment. CONCLUSION: FA can significantly control the development of lesions, reduce the symptoms of PP lesions and pruritus, and help prevent psoriasis recurrence.


Subject(s)
Acupuncture Therapy , Psoriasis , Humans , Infant , Psoriasis/drug therapy , Treatment Outcome , Pruritus/etiology , Pruritus/therapy , Research , Severity of Illness Index , Double-Blind Method
19.
Acta Pharmacol Sin ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589689

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is closely associated with metabolic derangement. Sodium glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) exert anti-HFpEF effects, but the underlying mechanisms remain unclear. In this study, we explored the anti-HFpEF effects of empagliflozin and liraglutide and the underlying molecular mechanisms in a mouse model of HFpEF. This model was established by high-fat diet (HFD) feeding plus Nω-nitro-L-arginine methyl ester (L-NAME) treatment. The mice were treated with empagliflozin (20 mg·kg-1·d-1, i.g.) or liraglutide (0.3 mg·kg-1·d-1, i.p.) or their combination for 4 weeks. At the end of the experimental protocol, cardiac function was measured using ultrasound, then mice were euthanized and heart, liver, and kidney tissues were collected. Nuclei were isolated from frozen mouse ventricular tissue for single-nucleus RNA-sequencing (snRNA-seq). We showed that administration of empagliflozin or liraglutide alone or in combination significantly improved diastolic function, ameliorated cardiomyocyte hypertrophy and cardiac fibrosis, as well as exercise tolerance but no synergism was observed in the combination group. Furthermore, empagliflozin and/or liraglutide lowered body weight, improved glucose metabolism, lowered blood pressure, and improved liver and kidney function. After the withdrawal of empagliflozin or liraglutide for 1 week, these beneficial effects tended to diminish. The snRNA-seq analysis revealed a subcluster of myocytes, in which Erbb4 expression was down-regulated under HFpEF conditions, and restored by empagliflozin or liraglutide. Pseudo-time trajectory analysis and cell-to-cell communication studies confirmed that the Erbb4 pathway was a prominent pathway essential for both drug actions. In the HFpEF mouse model, both empagliflozin and liraglutide reversed Erbb4 down-regulation. In rat h9c2 cells, we showed that palmitic acid- or high glucose-induced changes in PKCα and/or ERK1/2 phosphorylation at least in part through Erbb4. Collectively, the single-cell atlas reveals the anti-HFpEF mechanism of empagliflozin and liraglutide, suggesting that Erbb4 pathway represents a new therapeutic target for HFpEF. Effects and mechanisms of action of empagliflozin and liraglutide in HFpEF mice. HFpEF was induced with a high-fat diet and L-NAME for 15 weeks, and treatment with empagliflozin and liraglutide improved the HFpEF phenotype. Single nucleus RNA sequencing (snRNA-seq) was used to reveal the underlying mechanism of action of empagliflozin and liraglutide.

20.
Heliyon ; 10(7): e28423, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623237

ABSTRACT

Diets with high carbohydrate (HC) was reported to have influence on appetite and intermediary metabolism in fish. To illustrate whether betaine could improve appetite and glucose-lipid metabolism in aquatic animals, mandarin fish (Siniperca chuatsi) were fed with the HC diets with or without betaine for 8 weeks. The results suggested that betaine enhanced feed intake by regulating the hypothalamic appetite genes. The HC diet-induced downregulation of AMPK and appetite genes was also positively correlated with the decreased autophagy genes, suggesting a possible mechanism that AMPK/mTOR signaling might regulate appetite through autophagy. The HC diet remarkably elevated transcriptional levels of genes related to lipogenesis, while betaine alleviated the HC-induced hepatic lipid deposition. Additionally, betaine supplementation tended to store the energy storage as hepatic glycogen. Our findings proposed the possible mechanism for appetite regulation through autophagy via AMPK/mTOR, and demonstrated the feasibility of betaine as an aquafeed additive to regulate appetite and intermediary metabolism in fish.

SELECTION OF CITATIONS
SEARCH DETAIL
...