Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Asian Nat Prod Res ; 22(1): 69-82, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30588834

ABSTRACT

Dozens of hybrids of natural alkaloid evodiamine/rutaecarpine and thieno[2,3-d]pyrimidinones were synthesized in a straightforward method by condensation of substituted 2H-thieno[2,3-d][1, 3]oxazine-2,4(1H)-diones or N-methyl-2H-thieno[2,3-d][1, 3]oxazine-2,4(1H)-dione with 3,4-dihydro-ß-carbolines. In vitro cytotoxic assay discovered that compounds 9a, 10e, 11a, 11d, 11f, and 12a could induce antiproliferation against four different types of human cancer cells while compounds 10f and 12e were inactive. Notably, compound 11a displayed potent cell cytotoxicity for human non-small cell lung cancer cells A549, PC-9, human prostate cancer cells PC-3, and human breast cancer cell line MCF-7. Furthermore, compound 11a exhibited strong colony formation inhibition to A549 cells. These results unfold potential anticancer therapeutic applications of hybrids of thieno[2,3-d]pyrimidinones and quinazolinones.


Subject(s)
Alkaloids , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Indole Alkaloids , Molecular Structure , Pyrimidinones , Quinazolines , Structure-Activity Relationship
2.
Bioorg Med Chem ; 25(17): 4904-4916, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28774576

ABSTRACT

In the present study, a series of tetrahydropyridopyrimidinone derivatives, possessing potent dopamine D2, serotonin 5-HT1A and 5-HT2A receptors properties, was synthesized and evaluated as potential antipsychotics. Among them, 3-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl)-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one (10d) held the best pharmacological profile. It not only exhibited potent and balanced activities for D2, 5-HT1A, and 5-HT2A receptors, but was also endowed with low activities for α1A, 5-HT2C, H1 receptors and hERG channels, suggesting a low propensity for inducing orthostatic hypotension, weight gain and QT prolongation. In animal models, compound 10d reduced phencyclidine-induced hyperactivity with a high threshold for catalepsy induction. On the basis of its robust in vitro potency and in vivo efficacy in preclinical models of schizophrenia, coupled with a good pharmacokinetic profile, 10d was selected as a candidate for further development.


Subject(s)
Antipsychotic Agents/chemical synthesis , Pyrimidinones/chemistry , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Behavior, Animal/drug effects , Catalepsy/chemically induced , Catalepsy/drug therapy , Catalepsy/pathology , Disease Models, Animal , Dogs , Half-Life , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/metabolism , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT1A/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...