Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(38): 45526-45535, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37708401

ABSTRACT

Currently, there is a limited amount of research on PEDOT:LS (poly(3,4-ethylenedioxythiophene):sulfonated lignin)-based hydrogels. While the addition of PEDOT:LS can enhance the conductivity of the gel, it unavoidably disrupts the gel network and negatively affects its mechanical properties. The preparation process and freezing resistance of the hydrogels also pose significant challenges for their practical applications. In this study, we have developed a novel self-catalytic system, PEDOT:LS-Fe3+, for the rapid fabrication of conductive hydrogels. These hydrogels are further transformed into eutectogels by immersing them in a deep eutectic solvent. Compared with conventional hydrogels, the eutectogels exhibit improved elongation, mechanical strength, and resistance to freezing. Specifically, the eutectogels containing 2 wt % PEDOT:LS as conductive fillers and catalysts demonstrate exceptional stretchability (∼460%), self-adhesion (∼14.6 kPa on paper), UV-blocking capability (∼99.9%), and ionic conductivity (∼1.2 mS cm-1) even at extremely low temperatures (-60 °C). Moreover, the eutectogels exhibit high stability and sensitivity in flexible sensing, successfully detecting various human motions. This study presents a novel approach for the rapid preparation of the hydrogels by utilizing lignin in the conductive PEDOT polymerization process and forming a self-catalytic system with metal ions. These advancements make the eutectogels a promising candidate material for flexible wearable electronics.

2.
J Fluoresc ; 31(4): 1133-1141, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33974180

ABSTRACT

A new spiropyran-based fluorescent probe was developed for dual detection of Fe2+ ion and pH. Addition of Fe2+ and Ag+ to the probe solution enhanced the fluorescence intensity by 6 and 5 fold, respectively. Addition of Fe3+, Hg2+ and Ni2+ caused slight increase in the fluorescence intensity of the probe. While addition of other common metal ions did not bring about substantial change of the fluorescence. Thus the probe can be used for fluorescence turn-on detection of Fe2+ ion in ethanol/water (9:1) medium. The detection limit of the probe for Fe2+ is 0.77 µM. The suitable pH range for the probe to detect Fe2+ was pH 3 - 9. Other metal ions including Li+, Na+, K+, Ag+, Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Hg2+, Ca2+, Mg2+, Al3+, Cr3+, and Fe3+ did not cause marked interference with Fe2+ recognition. The color of the probe solution was yellow at pH 1 - 2 and colorless at other pH values. The fluorescence intensity of the probe was low at pH 1 - 12 and increased significantly when the pH was 13 and 14, indicating that the probe can be used as a colorimetric and fluorescent probe for sensing extremely acidic or extremely alkaline conditions through different channels.


Subject(s)
Fluorescent Dyes , Water , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...