Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Hazard Mater ; 470: 134293, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615646

ABSTRACT

Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 µg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 µg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.


Subject(s)
Astacoidea , Gastrointestinal Microbiome , Neonicotinoids , Nitro Compounds , Transcriptome , Water Pollutants, Chemical , Animals , Neonicotinoids/toxicity , Astacoidea/drug effects , Astacoidea/genetics , Gastrointestinal Microbiome/drug effects , Nitro Compounds/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Oxidative Stress/drug effects , Hepatopancreas/drug effects , Hepatopancreas/metabolism
2.
Fish Shellfish Immunol ; 147: 109437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360192

ABSTRACT

Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.


Subject(s)
Diptera , Gastrointestinal Microbiome , Animals , Larva/microbiology , Astacoidea , Aeromonas hydrophila/genetics , Antimicrobial Peptides , Antioxidants , Diet , Gene Expression , Anti-Bacterial Agents
3.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185392

ABSTRACT

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Subject(s)
Ammonia , Gastropoda , Animals , Diet , Antioxidants/metabolism , Gastropoda/metabolism , Immunity, Innate , Gene Expression , Muscles/metabolism , Superoxide Dismutase/metabolism , Animal Feed/analysis , Dietary Supplements , Xanthophylls
4.
Fish Shellfish Immunol ; 145: 109288, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104697

ABSTRACT

This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.


Subject(s)
Chitosan , Gastrointestinal Microbiome , Animals , Astacoidea , Chitosan/pharmacology , Diet , Dietary Supplements/analysis , Superoxide Dismutase/metabolism , Oligosaccharides/pharmacology , Immunity, Innate , Animal Feed/analysis
5.
Front Neurol ; 14: 1255117, 2023.
Article in English | MEDLINE | ID: mdl-38020667

ABSTRACT

Introduction: Traumatic brain injury (TBI) seriously affects the quality of human health and the prognosis of the patient, but the epidemiological characteristics of TBI can vary among populations. Numerous changes have occurred in the epidemiological characteristics of individuals with TBI in the fast-paced city of Shenzhen, China. However, little is known about these characteristics. This study aimed to investigate the changes in TBI epidemiology, help clinicians improve medical treatment. Methods: In this retrospective cross-sectional analysis, we collected the data of 4,229 patients with TBI admitted to 20 hospitals in Shenzhen in 2017. We collected data on age, gender, cause and severity of the injury, eventual diagnosis, time from injury to admission in a neurosurgery department, and patient outcomes. Two neurosurgeons simultaneously collected the data. We compared these results with a similar study conducted in Shenzhen during the period from 1994 to 2003 to clarify and explain the changes in the epidemiological characteristics of TBI. Results: The majority of respondents were men [2,830 (66.9%)]. The mean age was 32.5 ± 21.4 years. The youngest patient was less than 1 year old, and the oldest patient was 101 years old. A total of 3,947 (93.3%) patients had a favorable outcome, 219 (5.2%) had an unfavorable outcome, and 63 (1.5%) died. The predominant external cause was falls (1,779 [42.1%]); this was the most common cause of TBI in children and older adults. Riders of electric bicycles (423 [29.0%]) were the most vulnerable to traffic accident-related injuries. Time greater than 50 h from injury to admission to a neurosurgical department had a significant effect on prognosis (p < 0.001). Conclusion: The epidemiological characteristics of TBI have changed significantly over the past 20 years. Falls, rather than traffic accidents, were the most common cause of TBI. Further research is needed to devise solutions to decrease the incidence of falls and improve the outcomes of TBI.

6.
Antioxidants (Basel) ; 12(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37891881

ABSTRACT

Alpinia oxyphylla is a homology of medicine and food. This study aims to investigate the dominant chemical composition and explore the antioxidant properties of the ethanol extract of the leaves and stems of A. oxyphylla (AOE) on juvenile shrimp, Litopenaeus vannamei. An in vitro test showed that AOE and its dominant chemical composition procyanidin B-2 (1) and epicatechin (2) presented DPPH and ABTS radical scavenging activities. A shrimp feeding supplement experiment revealed that shrimp growth parameters and muscle composition were improved significantly when fed with a 200 mg/Kg AOE additive. Meanwhile, the activities of antioxidant enzymes (CAT, GSH-Px, SOD, and T-AOC) in serum and the liver and the expression of related genes (LvMn-SOD, LvCAT, LvproPo, and LvGSH-Px) were enhanced with various degrees in different AOE additive groups while the content of MDA was significantly decreased. Moreover, the antioxidative effect of AOE additive groups on shrimp was also observed in an acute ammonia nitrogen stress test.

7.
Fish Shellfish Immunol ; 141: 109050, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37666313

ABSTRACT

4-Nonylphenol (4-NP) is one of the common endocrine-disrupting chemicals (EDCs) in estuaries and coastal zones, which can exert detrimental effects on the physiological function of aquatic organisms. However, the molecular response triggered by 4-NP remains largely unknown in Pacific white shrimp (Litopenaeus vannamei). In this study, transcriptomic analysis was performed to investigate the underlying mechanisms of 4-NP toxicity in the hepatopancreas of L. vannamei. Nine RNA-Seq libraries were generated from L. vannamei at 0 h, 24 h, and 48 h following exposure to 4-NP. Compared with 0 h vs 24 h, 962 up- and 463 down-regulated differentially expressed genes (DEGs) were identified, indicating that many genes in L. vannamei were induced to resist adverse circumstances by 4-NP exposure. In contrast, 902 up- and 1027 down-regulated DEGs were revealed in the comparison of 0 h vs 48 h, demonstrating that prolonged exposure to the stress from 4-NP resulted in more inhibited genes. To validate the accuracy of the transcriptome data, eight DEGs were selected for quantitative real-time polymerase chain reaction (qRT-PCR), which were consistent with the RNA-Seq results. Through KEGG pathway enrichment analysis, three specific pathways related to hormonal effects and endocrine function of L. vannamei were enriched significantly, including tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. After 4-NP stress, genes involved in tyrosine metabolism (Tyr) and melanogenesis pathway (AC, CBP, Wnt, Frizzled, Tcf, and Ras) were induced to promote melanin pigment to help shrimp resist adverse environments. In the insect hormone biosynthesis, ALDH, CYP15A1, CYP15A1/C1, and JHE genes were activated to synthesize juvenile hormone (JH), while Spook, Phm, Sad, and CYP18A1 were induced to generate molting hormone. There is an enhanced interaction between the molting hormone and JH, with JH playing a dominant role and maintaining its "classic status quo action". Our study demonstrated that 4-NP exposure led to impairments of biological functions in L. vannamei hepatopancreas. The genes and pathways identified provide novel insights into the molecular mechanisms underlying 4-NP toxicity effects in prawns and enrich the information on the toxicity mechanism of crustaceans in response to EDCs exposure.


Subject(s)
Hepatopancreas , Penaeidae , Animals , Hepatopancreas/metabolism , Ecdysone/analysis , Ecdysone/metabolism , Ecdysone/pharmacology , Gene Expression Profiling , Transcriptome , Penaeidae/physiology , Tyrosine/metabolism
8.
Fish Shellfish Immunol ; 132: 108505, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36581251

ABSTRACT

Red claw crayfish (Cherax quadricarinatus) is an important freshwater shrimp species worldwide with enormous economic value. Waterless transportation is an inherent feature of red claw crayfish transportation. However, the high mortality of red claw crayfish is a severe problem in the aquaculture of crayfish after waterless transportation. In this study, we investigated the responses of the hepatopancreas from the red claw crayfish undergoing air exposure stress and normal conditions on transcriptome levels. We used Illumina-based RNA sequencing (RNA-Seq) to perform a transcriptome analysis from the hepatopancreas of red claw crayfish challenged by air exposure. An average of 57,148,800 clean reads per library was obtained, and 33,567 unigenes could be predicted and classified according to their homology with matches in the National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), Gene Ontology (GO), a manually annotated and reviewed protein sequence database (Swiss-Prot), protein families (Pfam), Clusters of Orthologous Groups (COG) of proteins, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 690 and 3407 differentially expressed genes (DEGs) were identified between the two stress stages of the red claw crayfish. More DEGs were identified in 12 h, indicating that gene expressions were largely changed at 12 h. Some immune-related pathways and genes were identified according to KEGG and GO enrichment analysis. A total of 12 DEGs involved in immune response and trehalose mechanism were verified by quantitative real-time-polymerase chain reaction (qRT-PCR). The results indicated that the red claw crayfish might counteract the stress of air exposure at the transcriptomic level by increasing expression levels of antioxidant-, immune-, and trehalose metabolism-related genes. These transcriptome results from the hepatopancreas provide significant insights into the influence mechanism of air exposure to the trehalose mechanism and immune response in the red claw crayfish.


Subject(s)
Astacoidea , Hepatopancreas , Animals , Astacoidea/genetics , Trehalose/metabolism , Gene Expression Profiling/veterinary , Transcriptome
9.
Front Neurol ; 13: 988854, 2022.
Article in English | MEDLINE | ID: mdl-36061997

ABSTRACT

To determine the possible role of matrix metallopeptidase (MMP)-8 and MMP-9 in the development of chronic subdural hematoma (CSDH), we investigated their expression in CSDH. In our previous study, we analyzed hematoma fluid and peripheral blood of 83 patients with CSDH, including 17 postoperative patients. Based on these results, we included 50 people in the normal group and analyzed 20 markers in the peripheral blood of each person. In order to identify representative markers, it was assessed by using overall differential gene expression. The concentration of MMP-8 was significantly higher in the normal group than that in the preoperative and postoperative groups. The concentration of MMP-9 was significantly lower in the normal group than in both preoperative and postoperative groups. Immunohistochemistry confirmed the expression of MMP-8 and MMP-9 in CSDH membranes. In conclusion, our results provide evidence of the expression of MMP-8 and MMP-9 in CSDH. In addition, the expression of MMP-8 and MMP-9 suggests angiogenesis in CSDH formation.

10.
Nat Commun ; 13(1): 3399, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697697

ABSTRACT

Ductal carcinoma in situ (DCIS) is considered a non-invasive precursor to breast cancer, and although associated with an increased risk of developing invasive disease, many women with DCIS will never progress beyond their in situ diagnosis. The path from normal duct to invasive ductal carcinoma (IDC) is not well understood, and efforts to do so are hampered by the substantial heterogeneity that exists between patients, and even within patients. Here we show gene expression analysis from > 2,000 individually micro-dissected ductal lesions representing 145 patients. Combining all samples into one continuous trajectory we show there is a progressive loss in basal layer integrity heading towards IDC, coupled with two epithelial to mesenchymal transitions, one early and a second coinciding with the convergence of DCIS and IDC expression profiles. We identify early processes and potential biomarkers, including CAMK2N1, MNX1, ADCY5, HOXC11 and ANKRD22, whose reduced expression is associated with the progression of DCIS to invasive breast cancer.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Biomarkers , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Disease Progression , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Transcription Factors/genetics , Transcriptome
11.
Fish Shellfish Immunol ; 127: 280-294, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35752371

ABSTRACT

This study aimed to investigate the effects of Elephantopus scaber extract on the GIFT (genetic improvement of farmed tilapia) strain of Nile tilapia Oreochromis niloticus. A total of 800 tilapia with an initial body weight of 1.34 ± 0.09 g each were randomly divided into five groups. The tilapia in the control group (E0 group) were fed on a basal diet only. Meanwhile, tilapia in the four experimental groups were fed on a basal diet supplemented with 1 g/kg (E1 group), 3 g/kg (E2 group), 5 g/kg (E3 group), and 7 g/kg (E4 group) of E. scaber extract for 10 weeks. Results showed that the survival rate was higher in the experimental groups than in the control group. Compared with the control group, some growth parameters (FW, WGR, SGR, VSI, and HSI) were significantly improved in the E1 group and E2 group. The crude lipid content in the dorsal muscle and liver was lower in the E1 group than in the control group. After E. scaber extract supplementation, activities of immunity-related enzymes (ACP, AKP, T-AOC, SOD, CAT, GSH-Px and LZM) in plasma, liver, spleen and head kidney, and expressions of immunity-related genes (IL-1ß, IFN-γ, TNF-α, and CCL-3) in liver, spleen and head kidney showed various degrees of improvement, while MDA content and Hsp70 expression level were decreased. The survival rate of tilapia increased in all the supplementation groups after Streptococcus agalactiae treatment. E. scaber extract addition changed the species composition, abundance, and diversity of intestinal microbiota in tilapia. These results demonstrate that E. scaber extract supplementation in diet can improve the growth, immunity, and disease resistance of GIFT against S. agalactiae. E. scaber extract supplementation can also change intestinal microbiota and reduce crude lipid content in dorsal muscle and liver. The above indicators show that the optimal dose of E. scaber extract for GIFT is 1 g/kg.


Subject(s)
Asteraceae , Cichlids , Fish Diseases , Gastrointestinal Microbiome , Streptococcal Infections , Tilapia , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Lipids , Plant Extracts/metabolism , Plant Extracts/pharmacology , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Tilapia/metabolism
12.
J Clin Med ; 11(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35207175

ABSTRACT

Chronic subdural hematoma (CSDH) is a common neurological disease that involves the collection of blood products in the subdural space. The progression of CSDH is an angiogenic and inflammatory process, but the multifactorial mechanisms underlying CSDH are still not fully understood. We aimed to identify one or more factors that may play an important role in the development of CSDH. We enrolled 83 patients with CSDH, including 17 postoperative patients, and analyzed 20 markers in the hematoma fluid and peripheral blood of each patient. Overall differential gene expression was examined to identify the representative markers. The concentration of MMP-8 was significantly lower in the postoperative group than in the preoperative group. The concentration of MMP-9 was significantly higher in the postoperative group than in the preoperative group. These findings indicate that MMP-8 and MMP-9 may play important roles in the pathophysiology of CSDH. Understanding the pathways associated with CSDH may provide insights for improving disease outcomes.

13.
J Neurotrauma ; 39(1-2): 196-210, 2022 01.
Article in English | MEDLINE | ID: mdl-34726508

ABSTRACT

Excessive activation of voltage-gated sodium channel Nav1.3 has been recently reported in secondary traumatic brain injury (TBI). However, the molecular mechanisms underlying regulating voltage-gated sodium channel (Nav1.3) have not been well understood. The present study used a TBI rat model induced by a fluid percussion device and performed a circular RNA (circRNA) microarray (n = 3) to profile the altered circRNAs in the hippocampus after TBI. After polymerase chain reaction (PCR) validation, certain circRNAs were selected to investigate the function and mechanism in regulating Nav1.3 in the TBI rat model by intracerebroventricular injection with lentivirus. The neurological outcome was evaluated by Morris water maze test, modified Neurological Severity Score (mNSS), brain water content measurement, and hematoxylin and eosin staining. The related molecular mechanisms were explored with PCR, Western blotting, luciferase reporter, chromatin immunoprecipitation assay, and electrophoretic mobility shift assay (EMSA). A total of 347 circRNAs were observed to be differentially expressed (fold change [FC] ≥ 1.2 and p < 0.05) after TBI, including 234 up-regulated and 113 down-regulated circRNAs. Among 10 validated circRNAs, we selected circRNA_009194 with the maximized up-regulated fold change (n = 5, FC = 4.45, p < 0.001) for the in vivo functional experiments. Down-regulation of circRNA_009194 resulted in a 27.5% reduced mNSS in rat brain (n = 6, p < 0.01) after TBI and regulated the expression levels of miR-145-3p, Sp1, and Nav1.3, which was reversed by sh-miR-145-3p or Sp1/Nav1.3 overexpression (n = 5, p < 0.05). Mechanistically, circRNA_009194 might act as a sponge for miR-145-3p to regulate Sp1-mediated Nav1.3. This study demonstrated that circRNA_009194 knockdown could improve neurological outcomes in TBI in vivo by inhibiting Nav1.3, directly or indirectly.


Subject(s)
Brain Injuries, Traumatic , MicroRNAs , Voltage-Gated Sodium Channels , Animals , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Down-Regulation , Hippocampus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NAV1.3 Voltage-Gated Sodium Channel , RNA, Circular/genetics , Rats , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism
14.
Medicine (Baltimore) ; 100(49): e27794, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34889231

ABSTRACT

RATIONALE: Hydrocephalus is a common disease in neurosurgery. The typical symptoms of hydrocephalus include urinary incontinence, gait instability, and cognitive decline. Irritability rarely occurs in patients with hydrocephalus. Irritability rarely occurs in patients with hydrocephalus, especially in long-standing overt ventriculomegaly of adulthood (LOVA). PATIENT CONCERNS: A 30-year-old female was admitted to our hospital because of mental retardation and unstable gait for more than 15 years. She had undergone ventriculoperitoneal shunt 15 years prior due to ventriculomegaly and related symptoms. However, the shunt catheter was removed shortly after surgery because of blockage, with no further postoperative treatment. DIAGNOSIS: The patient was diagnosed with long-standing overt ventriculomegaly according to her head circumference and clinical symptoms, including adult hydrocephalus development, overt triventriculomegaly and absence of a secondary cause for aqueductal stenosis in adulthood. INTERVENTIONS: After considerable discussion, she underwent ventriculoperitoneal shunt placement and showed dramatic and sustained improvement. OUTCOMES: The patient has been followed at 3-month intervals for over 2 years since discharge, and both the patient and family have reported a significant change in their daily life. She was able to live independently and control her emotions. Slight epilepsy was noted approximately 5 months after surgery but recovered 2 months later. LESSONS: It is difficult to decide whether to treat LOVA when the in patients whose symptoms are not significant. We believe that early diagnosis and positive treatment can help improve outcomes and would recommend ventriculoperitoneal (VP) shunting in patients with LOVA.


Subject(s)
Cognitive Dysfunction , Gait Disorders, Neurologic , Hydrocephalus/surgery , Third Ventricle/surgery , Ventriculoperitoneal Shunt , Ventriculostomy/methods , Adult , Cerebral Aqueduct/physiopathology , Female , Humans , Hydrocephalus/etiology , Magnetic Resonance Imaging
15.
Fish Shellfish Immunol ; 119: 524-532, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34737131

ABSTRACT

This study was performed to investigate the effects of dietary trehalose on growth, muscle composition, non-specific immune responses, gene expression and desiccation resistance of juvenile red claw crayfish (Cherax quadricarinatus). A total of 540 (body weight of 0.41 ± 0.05) crayfish were randomly divided into six groups for a feeding experiment. Six diets with trehalose levels at 0 (Diet 1), 1 (Diet 2), 2 (Diet 3), 5 (Diet 4), 10 (Diet 5) and 15 (Diet 6) g kg-1 were prepared to feed juvenile red claw crayfish for 8 weeks. The results showed that the weight gain rate (WGR) and specific growth rate (SGR) of crayfish in Diet 4, Diet 5 and Diet 6 groups were significantly improved compared with the control group (Diet 1). Muscle crude protein contents of crayfish fed Diet 4, Diet 5 and Diet 6 were significantly higher than those of the control group. The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) in hepatopancreas and hemolymph of crayfish for Diet 4, Diet 5, and Diet 6 groups were significantly increased while malondialdehyde (MDA) content was significantly reduced when compared with the control. The total antioxidant capacity (T-AOC), catalase (CAT) and glutathione peroxidase (GPx) activities in the hepatopancreas and hemolymph of crayfish fed Diet 5 and Diet 6 were significantly higher than those in the control group. However, acid phosphatase (ACP) activity was not significantly different among all experimental groups. The hepatopancreas and intestine trehalose contents of crayfish showed an upward trend with the increase of dietary trehalose levels. Compared with the control group, supplementation of 5-15 g kg-1 trehalose in the feed up-regulated the expression levels of GPx, C-type lysozyme (C-LZM), antilipolysacchride factor (ALF), facilitated trehalose transporter homolog isoform X2 (Tret1-2) and facilitated trehalose transporter isoform X4 (Tret1-4) mRNA. In addition, supplementation of 5-15 g kg-1 trehalose in the feed could improve the survival rate of red claw crayfish under desiccation stress. These results suggested that supplementation of 5-15 g kg-1 trehalose in feed could significantly improve the growth performance, muscle protein, non-specific immunity and desiccation resistance of juvenile red claw crayfish.


Subject(s)
Astacoidea , Trehalose , Animal Feed/analysis , Animals , Antioxidants , Astacoidea/genetics , Desiccation , Diet/veterinary , Dietary Supplements/analysis , Gene Expression , Immunity, Innate/genetics
17.
Sci Total Environ ; 781: 146731, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-33794460

ABSTRACT

Nonylphenol (NP) is considered as one of the persistent organic pollutants (POPs) in the environment. Pacific white shrimp Litopenaeus vannamei is the predominant species in China, which is frequently affected by environmental pollutants. However, potential toxicity mechanism of NP in shrimp has not been comprehensively studied. To explore the physiological changes and molecular mechanism involved in NP exposure of shrimp, we analyzed histological alterations, apoptosis and transcriptional responses of L.vannamei subjected to NP. Results indicated that significant changes in the histoarchitecture of the gills were observed after NP exposure for 3, 12 and 48 h. Apoptosis was also detected in a time-dependent manner. Numerous differentially expressed genes (DEGs) were obtained at 3 h, 12 h and 48 h after exposure. On the basis of the expression patterns over the time course, these DEGs were classified into 12 clusters. GO and KEGG enrichment analysis of these DEGs was carried out and a dynamic and global view was obtained in shrimp after NP exposure on a transcriptome level. In addition, 15 DEGs involved in immune response, apoptosis, DNA repair, osmoregulation etc. were selected for qRT-PCR validation. The expression patterns of these DEGs kept a well consistent with the high-throughput data at different timepoints, which confirmed the accuracy and reliability of the transcriptome data. All the results demonstrated that NP exposure might lead to impairments of biological functions in gills, alter immune and antioxidant response, compromise DNA repair and anti-apoptosis abilities of shrimp, cause severe histopathological changes and eventually trigger apoptosis. The present study enriched the information on the toxicity mechanism of crustaceans in response to NP exposure.


Subject(s)
Penaeidae , Transcriptome , Animals , Apoptosis , China , Gills , Penaeidae/genetics , Phenols , Reproducibility of Results
18.
Cancer Cell Int ; 21(1): 24, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407478

ABSTRACT

BACKGROUND: Glioblastoma multiforme, the most aggressive and malignant primary brain tumor, is characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Our previous studies delineated a crosstalk between PI3K/Akt and JNK signaling pathways, and a moderate anti-glioblastoma synergism caused by the combined inhibition of PI3K p110ß (PI3Kß) isoform and JNK. However, this combination strategy is not potent enough. MLK3, an upstream regulator of ERK and JNK, may replace JNK to exert stronger synergism with PI3Kß. METHODS: To develop a new combination strategy with stronger synergism, the expression pattern and roles of MLK3 in glioblastoma patient's specimens and cell lines were firstly investigated. Then glioblastoma cells and xenografts in nude mice were treated with the PI3Kß inhibitor AZD6482 and the MLK3 inhibitor URMC-099 alone or in combination to evaluate their combination effects on tumor cell growth and motility. The combination effects on cytoskeletal structures such as lamellipodia and focal adhesions were also evaluated. RESULTS: MLK3 protein was overexpressed in both newly diagnosed and relapsing glioblastoma patients' specimens. Silencing of MLK3 using siRNA duplexes significantly suppressed migration and invasion, but promoted attachment of glioblastoma cells. Combined inhibition of PI3Kß and MLK3 exhibited synergistic inhibitory effects on glioblastoma cell proliferation, migration and invasion, as well as the formation of lamellipodia and focal adhesions. Furthermore, combination of AZD6482 and URMC-099 effectively decreased glioblastoma xenograft growth in nude mice. Glioblastoma cells treated with this drug combination showed reduced phosphorylation of Akt and ERK, and decreased protein expression of ROCK2 and Zyxin. CONCLUSION: Taken together, combination of AZD6482 and URMC-099 showed strong synergistic anti-tumor effects on glioblastoma in vitro and in vivo. Our findings suggest that combined inhibition of PI3Kß and MLK3 may serve as an attractive therapeutic approach for glioblastoma multiforme.

19.
Technol Cancer Res Treat ; 19: 1533033820983029, 2020.
Article in English | MEDLINE | ID: mdl-33356959

ABSTRACT

Liver cancer is considered the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Currently, there is no specific and effective therapy for hepatocellular carcinoma. Therefore, developing novel diagnostic and therapeutic strategies against hepatocellular carcinoma is of paramount importance. Solute carrier family 6 member 8 (SLC6A8) encodes the solute carrier family 6-8 to transport creatine into cells in a Na+ and Cl-- dependent manner. SLC6A8 deficiency is characterized by intellectual disabilities, loss of speech, and behavioral abnormalities. Of concern, the association of SLC6A8 with hepatocellular carcinoma remains elusive. In this study, we revealed that SLC6A8 knockdown significantly induced apoptosis and suppressed the migration and invasion of Hep3B and Huh-7 cells. These findings depicted the vital role of SLC6A8 in the initiation and progression of human hepatocellular carcinoma.


Subject(s)
Biomarkers, Tumor , Cell Movement/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Apoptosis , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Gene Knockdown Techniques , Gene Silencing , Humans , Neoplasm Invasiveness
20.
Front Aging Neurosci ; 12: 584842, 2020.
Article in English | MEDLINE | ID: mdl-33192478

ABSTRACT

PURPOSE: To investigate differences in cerebrospinal fluid (CSF) flow through the aqueduct and to determine whether there is a relationship between CSF flow and ventricular volume parameters in idiopathic normal pressure hydrocephalus (iNPH) patients, elderly acquired hydrocephalus patients and age-matched healthy volunteers by phase-contrast MR (PC-MR). METHODS: A total of 40 iNPH patients and 41 elderly acquired hydrocephalus patients and 26 age-matched healthy volunteers in the normal control (NC) group were included between November 2017 and October 2019 in this retrospective study. The following CSF flow parameters were measured with PC-MR: peak velocity, average velocity (AV), aqueductal stroke volume (ASV), net ASV, and net flow. The following ventricular volume parameters were measured: ventricular volume (VV), brain volume, total intracranial volume, and relative VV. Differences between the iNPH and acquired hydrocephalus groups were compared Mann-Whitney U test and correlations between CSF flow and ventricular volume parameters were assessed using the Spearman correlation coefficient. RESULTS: Aqueductal stroke volume was significantly higher in the iNPH and acquired hydrocephalus groups than in the NC group, but did not differ significantly between the iNPH group and acquired hydrocephalus group. The AV, net ASV, and net flow in the iNPH and acquired hydrocephalus groups were significantly higher than those in the NC group (P < 0.0001), and those in the acquired hydrocephalus group were significantly higher than those in the iNPH group (P = 0.01, P = 0.007, P = 0.002, respectively). The direction of the AV and net ASV significantly differed among the three groups. There were no associations between the volume parameters and CSF flow according to PC-MR among the three groups. CONCLUSION: Compared with iNPH, elderly acquired hydrocephalus demonstrated higher CSF hyperdynamic flow. Although increased CSF flow may contribute to further changes in ventricular morphology, there is no linear relationship between them. These findings might help increase our understanding of flow dynamics in iNPH and elderly acquired hydrocephalus.

SELECTION OF CITATIONS
SEARCH DETAIL
...