Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6603): 335-339, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857587

ABSTRACT

The separation and purification of xylene isomers is an industrially important but challenging process. Developing highly efficient adsorbents is crucial for the implementation of simulated moving bed technology for industrial separation of these isomers. Herein, we report a stacked one-dimensional coordination polymer {[Mn(dhbq)(H2O)2], H2dhbq = 2,5-dihydroxy-1,4-benzoquinone} that exhibits an ideal molecular recognition and sieving of xylene isomers. Its distinct temperature-adsorbate-dependent adsorption behavior enables full separation of p-, m-, and o-xylene isomers in both vapor and liquid phases. The delicate stimuli-responsive swelling of the structure imparts this porous material with exceptionally high flexibility and stability, well-balanced adsorption capacity, high selectivity, and fast kinetics at conditions mimicking industrial settings. This study may offer an alternative approach for energy-efficient and adsorption-based industrial xylene separation and purification processes.

2.
ACS Appl Mater Interfaces ; 14(18): 21089-21097, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35477298

ABSTRACT

Selective CO2 capture is of great significance for environmental protection and industrial demand. Here, we report a stable and flexible metal-organic framework (MOF) with excellent water/moisture stability, namely, ZnDatzBdc, that enables high-performance selective CO2 capture from N2 and CH4 via a discriminatory gate-opening effect. ZnDatzBdc shows reversible structural transformation between the open-phase (OP) state and the close-phase (CP) state, owing to the synergistic effect of breakage/re-formation of intraframework hydrogen bonds and the rotation of the phenyl rings. Significantly, ZnDatzBdc exhibits S-shaped isotherms toward CO2, resulting in a large CO2 theoretical working capacity of 94.9 cm3/cm3 under typical pressure vacuum swing adsorption (PVSA) operations, which outperforms other flexible MOFs showing the CO2 selective gate-opening effect except for the miosture-sensitive ELM-11. In addition, CO2 uptake of ZnDatzBdc is well maintained upon multiple water/moisture exposure, indicating its excellent stability. Moreover, ZnDatzBdc establishes remarkable CO2 selectivity with ultrahigh uptake ratios of CO2/N2 (107 at 273 K and 129 at 298 K) and CO2/CH4 (35 at 273 K and 44 at 298 K) at 100 kPa. The in situ gas sorption PXRD experiment verifies that the gate-opening effect takes place in the atmospheric environment of CO2 but not for N2 or CH4. Molecular simulation suggests the selective gate-opening of CO2 comes from its strong electrostatic interactions with the amino groups. Furthermore, effective breakthrough performance and easy regeneration are further confirmed. Hence, combined with excellent separation performance and remarkable stability, ZnDatzBdc can serve as a potential industrial adsorbent for selective CO2 capture.

3.
J Am Chem Soc ; 144(4): 1681-1689, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-34965123

ABSTRACT

The removal of carbon dioxide (CO2) from acetylene (C2H2) is a critical industrial process for manufacturing high-purity C2H2. However, it remains challenging to address the tradeoff between adsorption capacity and selectivity, on account of their similar physical properties and molecular sizes. To overcome this difficulty, here we report a novel strategy involving the regulation of a hydrogen-bonding nanotrap on the pore surface to promote the separation of C2H2/CO2 mixtures in three isostructural metal-organic frameworks (MOFs, named MIL-160, CAU-10H, and CAU-23, respectively). Among them, MIL-160, which has abundant hydrogen-bonding acceptors as nanotraps, can selectively capture acetylene molecules and demonstrates an ultrahigh C2H2 storage capacity (191 cm3 g-1, or 213 cm3 cm-3) but much less CO2 uptake (90 cm3 g-1) under ambient conditions. The C2H2 adsorption amount of MIL-160 is remarkably higher than those for the other two isostructural MOFs (86 and 119 cm3 g-1 for CAU-10H and CAU-23, respectively) under the same conditions. More importantly, both simulation and experimental breakthrough results show that MIL-160 sets a new benchmark for equimolar C2H2/CO2 separation in terms of the separation potential (Δqbreak = 5.02 mol/kg) and C2H2 productivity (6.8 mol/kg). In addition, in situ FT-IR experiments and computational modeling further reveal that the unique host-guest multiple hydrogen-bonding interaction between the nanotrap and C2H2 is the key factor for achieving the extraordinary acetylene storage capacity and superior C2H2/CO2 selectivity. This work provides a novel and powerful approach to address the tradeoff of this extremely challenging gas separation.

4.
ACS Appl Mater Interfaces ; 13(44): 51997-52005, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34283555

ABSTRACT

Adsorptive separation by porous solids provides an energy-efficient alternative for the purification of important chemical species compared to energy-intensive distillations. Particularly, the separation of linear hexane isomers from its branched counterparts is crucial to produce premium grade gasoline with high research octane number (RON). Herein, we report the synthesis of a new, flexible zinc-based metal-organic framework, [Zn5(µ3-OH)2(adtb)2(H2O)5·5 DMA] (Zn-adtb), constructed from a butterfly shaped carboxylate linker with underlying (4,8)-connected scu topology capable of separating the C6 isomers nHEX, 3MP, and 23DMB. The sorbate-sorbent interactions and separation mechanisms were investigated and analyzed through in situ FTIR, solid state NMR measurements and computational modeling. These studies reveal that Zn-adtb discriminates the nHEX/3MP isomer pair through a kinetic separation mechanism and the nHEX/23DMB isomer pair through a molecular sieving mechanism. Column breakthrough measurements further demonstrate the efficient separation of linear nHEX from the mono- and dibranched isomers.

5.
Inorg Chem ; 60(16): 11730-11738, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-33872495

ABSTRACT

The effective removal of radioactive 99TcO4- anion from nuclear wastewater remains a very difficult unsolved problem. Functional adsorbent materials with high stability, anion-exchange capacity, excellent selectivity, and recyclability are much needed to solve this problem. In this work, we designed two stable cationic metal-organic frameworks (MOFs)-Zr-tcbp-Me and Zr-tcpp-Me-for possible use as adsorbent materials to remove 99TcO4-. Both compounds were synthesized by solvothermal reactions of the tetracarboxylate ligand with zirconium salt, followed by postsynthetic modification (N-methylation). The crystallinity of both zirconium-based MOFs can be well retained under harsh conditions, and they exhibit high adsorption capacity and selectivity toward ReO4- anion, a nonradioactive analogue of 99TcO4-. Zr-tcbp-Me and Zr-tcpp-Me demonstrate the highest framework stability toward acidity among all previously reported cationic MOFs that have been tested for perrhenate removal from wastewater.

6.
Angew Chem Int Ed Engl ; 60(19): 10593-10597, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33704894

ABSTRACT

The separation of n-alkanes from their branched isomers is vitally important to improve octane rating of gasoline. To facilitate mass transfer, adsorptive separation is usually operated under high temperatures in industry, which require considerable energy. Herein, we present a kind of dynamic pillar-layered MOF that exhibits self-adjustable structure and pore space, a behavior induced by guest molecules. A combination of the flexibility of the framework with the commensurate adsorption for n-hexane results in exceptional performance in separating hexane isomers. More significantly, lower temperature prompts the guest molecules to open the dynamic pores, which may provide a new perspective for optimized separation performance at lower temperatures with less energy consumption.

7.
Small ; 17(22): e2005165, 2021 06.
Article in English | MEDLINE | ID: mdl-33140577

ABSTRACT

Metal-organic frameworks (MOFs) built on calcium metal (Ca-MOFs) represent a unique subclass of MOFs featuring high stability, low toxicity, and relatively low density. Ca-MOFs show considerable potential for molecular separations, electronic, magnetic, and biomedical applications, although they are not investigated as extensively as transition metal-based MOFs. Compared to MOFs made of other groups of metals, Ca-MOFs may be particularly advantageous for certain applications such as adsorption and storage of light molecules because of their gravimetric benefit, and drug delivery due to their high biocompatibility. This review intends to provide an overview on the recent development of Ca-MOFs, including their synthesis, crystal structures, important properties, and related applications. Various synthetic methods and techniques, types of building blocks, structure and porosity features, selected physical properties, and potential uses will be discussed and summarized. Representative examples will be illustrated for each type of important applications with a focus on their structure-property relations.


Subject(s)
Metal-Organic Frameworks , Adsorption , Calcium , Drug Delivery Systems , Porosity
8.
Langmuir ; 30(4): 1080-8, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24432826

ABSTRACT

This work investigates the adsorption of organosulfur compounds in model fuels over metal-organic frameworks (MOFs) using a combined experimental/computational approach. Adsorption isotherms of three MOFs, MIL-101(Cr), MIL-100(Fe), and Cu-BTC, follow the Langmuir isotherm models, and Cu-BTC shows the highest adsorption capacity for both dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT), ascribing to the highest density of adsorption sites and fairly strong adsorption sites on Cu-BTC. Experimental results show adsorption selectivity of various compounds in model fuels follows the order of quinoline (Qu) > indole (In) > DBT > 4,6-DMDBT > naphthalene (Nap), which is consistent with the order of calculated binding energies. Adsorption capacities of thiophenic compounds decrease significantly with the introduction of Qu, In, or water due to their strong competitive adsorptions over the coordinatively unsaturated Cu sites on Cu-BTC. The binding energies of Qu, In, H2O, and DBT are calculated as -56.04, -41.01, -50.27, and -27.52 kJ/mol, respectively. The experimental and computational results together suggest that the adsorption strength of thiophenic compounds over Cu-BTC is dominated by the interaction of both the conjugated π system (π-M) and the lone pair of electrons on sulfur atom (σ-M) of thiophenes, with the coordinatively unsaturated sites (CUS) on Cu-BTC. Alkyl groups on 4- and/or 6-positions of thiophenic compounds function as both eletron donor to increase π-M interaction and steric inhibitor to decrease σ-M interaction. MOFs with strong and highly dense CUS can be promising materials for ADS of fuels.

SELECTION OF CITATIONS
SEARCH DETAIL
...