Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Small Methods ; : e2301778, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741551

ABSTRACT

With the rapid development and maturity of electrochemical CO2 conversion involving cathodic CO2 reduction reaction (CO2RR) and anodic oxygen evolution reaction (OER), conventional ex situ characterizations gradually fall behind in detecting real-time products distribution, tracking intermediates, and monitoring structural evolution, etc. Nevertheless, advanced in situ techniques, with intriguing merits like good reproducibility, facile operability, high sensitivity, and short response time, can realize in situ detection and recording of dynamic data, and observe materials structural evolution in real time. As an emerging visual technique, scanning electrochemical microscope (SECM) presents local electrochemical signals on various materials surface through capturing micro-current caused by reactants oxidation and reduction. Importantly, SECM holds particular potentials in visualizing reactive intermediates at active sites and obtaining instantaneous morphology evolution images to reveal the intrinsic reactivity of active sites. Therefore, this review focuses on SECM fundamentals and its specific applications toward CO2RR and OER, mainly including electrochemical behavior observation on local regions of various materials, target products and onset potentials identification in real-time, reaction pathways clarification, reaction kinetics exploration under steady-state conditions, electroactive materials screening and multi-techniques coupling for a joint utilization. This review undoubtedly provides a leading guidance to extend various SECM applications to other energy-related fields.

2.
Electrochem Energ Rev ; 7(1): 14, 2024.
Article in English | MEDLINE | ID: mdl-38586610

ABSTRACT

Developing electrochemical energy storage and conversion devices (e.g., water splitting, regenerative fuel cells and rechargeable metal-air batteries) driven by intermittent renewable energy sources holds a great potential to facilitate global energy transition and alleviate the associated environmental issues. However, the involved kinetically sluggish oxygen evolution reaction (OER) severely limits the entire reaction efficiency, thus designing high-performance materials toward efficient OER is of prime significance to remove this obstacle. Among various materials, cost-effective perovskite oxides have drawn particular attention due to their desirable catalytic activity, excellent stability and large reserves. To date, substantial efforts have been dedicated with varying degrees of success to promoting OER on perovskite oxides, which have generated multiple reviews from various perspectives, e.g., electronic structure modulation and heteroatom doping and various applications. Nonetheless, the reviews that comprehensively and systematically focus on the latest intellectual design strategies of perovskite oxides toward efficient OER are quite limited. To bridge the gap, this review thus emphatically concentrates on this very topic with broader coverages, more comparative discussions and deeper insights into the synthetic modulation, doping, surface engineering, structure mutation and hybrids. More specifically, this review elucidates, in details, the underlying causality between the being-tuned physiochemical properties [e.g., electronic structure, metal-oxygen (M-O) bonding configuration, adsorption capacity of oxygenated species and electrical conductivity] of the intellectually designed perovskite oxides and the resulting OER performances, coupled with perspectives and potential challenges on future research. It is our sincere hope for this review to provide the scientific community with more insights for developing advanced perovskite oxides with high OER catalytic efficiency and further stimulate more exciting applications.

3.
J Phys Chem Lett ; 15(16): 4501-4507, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38634716

ABSTRACT

The fine-tuning of the geometric and electronic structures of active sites plays a crucial role in catalysis. However, the intricate entanglement between the two aspects results in a lack of interpretable design for active sites, posing a challenge in developing high-performance catalysts. Here, we find that surface reconstruction induced by phase transition in intermetallic alloys enables synergistic geometric and electronic structure modulation, creating a desired active site microenvironment for propane dehydrogenation. The resulting electron-rich four-coordinate Rh1 site in the RhGe0.5Ga0.5 intermetallic alloy can accelerate the desorption of propylene and suppress the side reaction and thus exhibits a propylene selectivity of ∼98% with a low deactivation constant of 0.002 h-1 under propane dehydrogenation at 550 °C. Furthermore, we design a computational workflow to validate the rationality of the microenvironment modulation induced by the phase transition in an intermetallic alloy.

4.
J Clin Med Res ; 16(2-3): 63-74, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38550548

ABSTRACT

Background: Migraine, vestibular migraine (VM) and tension-type headache (TTH) are the most common disorders in dizziness and headache clinics, associated with dizziness or vertigo and postural imbalance, causing a substantial burden on the individual and the society. The objective of this research was to examine the presence of spontaneous nystagmus, comorbidity of benign paroxysmal positional vertigo (BPPV), and Tumarkin fall in patients; additionally, the study focused on assessing the patients' responses to bithermal caloric irrigation and video head impulse test (vHIT). Methods: Consecutive patients diagnosed with migraine, VM, and TTH according to the International Classification of Headache Disorders, third edition (beta version (ICHD-3ß)), who were referred to Dizziness and Headache Clinic were enrolled. BPPV and Tumarkin fall were assessed by questionnaires. The presence of BPPV was further evaluated through Dix-Hallpike or head roll maneuver, while spontaneous nystagmus was monitored using video-oculography during interictal period. Lastly, patients' responses to bithermal caloric irrigation and vHIT were analyzed. Results: There was a significantly higher incidence of spontaneous nystagmus in VM compared to both migraine and TTH. The drop attack episodes were slightly more frequent in VM than in TTH and migraine, though not statistically significant. The prevalence of BPPV was significantly higher in VM than in migraine and TTH. Unilateral vestibular paresis was more common in the VM group than in migraine and TTH. There was profound unilateral weakness (UW) in VM patients than in migraine, but no significant difference was found between VM and TTH. In VM, the percentage of saccades along with reduced vHIT gain was significantly higher than in migraine. Lastly, the percentage of abnormal response in vHIT was significantly lower than the percentage of abnormal UW in caloric irrigation across all groups. Conclusions: In VM patients, the prevalences of decompensated peripheral damage and BPPV were higher than in migraine and TTH patients as disclosed by the presence of peripheral spontaneous nystagmus and abnormal vHIT during the interictal period. Our findings suggest that the peripheral vestibular system acts as a significant mechanism in the pathogenesis of VM, and it might also be involved in migraine and TTH cases without vertigo symptoms.

5.
Adv Mater ; 36(21): e2313179, 2024 May.
Article in English | MEDLINE | ID: mdl-38353598

ABSTRACT

Single-atom decorating of Pt emerges as a highly effective strategy to boost catalytic properties, which can trigger the most Pt active sites while blocking the smallest number of Pt atoms. However, the rational design and creation of high-density single-atoms on Pt surface remain as a huge challenge. Herein, a customized synthesis of surface-enriched single-Bi-atoms tailored Pt nanorings (SE-Bi1/Pt NRs) toward methanol oxidation is reported, which is guided by the density functional theory (DFT) calculations suggesting that a relatively higher density of Bi species on Pt surface can ensure a CO-free pathway and accelerate the kinetics of *HCOOH formation. Decorating Pt NRs with dense single-Bi-atoms is achieved by starting from PtBi intermetallic nanoplates (NPs) with intrinsically isolated Bi atoms and subsequent etching and annealing treatments. The SE-Bi1/Pt NRs exhibit a mass activity of 23.77 A mg-1 Pt toward methanol oxidation in alkaline electrolyte, which is 2.2 and 12.8 times higher than those of Pt-Bi NRs and Pt/C, respectively. This excellent activity endows the SE-Bi1/Pt NRs with a high likelihood to be used as a practical anodic electrocatalyst for direct methanol fuel cells (DMFCs) with high power density of 85.3 mW cm-2 and ultralow Pt loading of 0.39 mg cm-2.

6.
Small ; 20(26): e2311130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38247198

ABSTRACT

Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon-free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium extraction from seawater (UES) can offset the gap. However, the low uranium concentration, the complicated uranium speciation, the competitive metal ions, and the inevitable marine interference remarkably affect the kinetics, capacity, selectivity, and sustainability of UES materials. To date, massive efforts have been made with varying degrees of success to pursue a desirable UES performance on various nanomaterials. Nevertheless, comprehensive and systematic coverage and discussion on the emerging UES materials presenting the fast-growing progress of this field is still lacking. This review thus challenges this position and emphatically focuses on this topic covering the current mainstream UES technologies with the emerging UES materials. Specifically, this review elucidates the causality between the physiochemical properties of UES materials induced by the intellectual design strategies and the UES performances and further dissects the relationships of materials-properties-activities and the corresponding mechanisms in depth. This review is envisaged to inspire innovative ideas and bring technical solutions for developing technically and economically viable UES materials.

7.
Angew Chem Int Ed Engl ; 63(11): e202319370, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38224011

ABSTRACT

Single atom catalysts with defined local structures and favorable surface microenvironments are significant for overcoming slow kinetics and accelerating O2 electroreduction. Here, enriched tip-like FeN4 sites (T-Fe SAC) on spherical carbon surfaces were developed to investigate the change in surface microenvironments and catalysis behavior. Finite element method (FEM) simulations, together with experiments, indicate the strong local electric field of the tip-like FeN4 and the more denser interfacial water layer, thereby enhancing the kinetics of the proton-coupled electron transfer process. In situ spectroelectrochemical studies and the density functional theory (DFT) calculation results indicate the pathway transition on the tip-like FeN4 sites, promoting the dissociation of O-O bond via side-on adsorption model. The adsorbed OH* can be facilely released on the curved surface and accelerate the oxygen reduction reaction (ORR) kinetics. The obtained T-Fe SAC nanoreactor exhibits excellent ORR activities (E1/2 =0.91 V vs. RHE) and remarkable stability, exceeding those of flat FeN4 and Pt/C. This work clarified the in-depth insights into the origin of catalytic activity of tip-like FeN4 sites and held great promise in industrial catalysis, electrochemical energy storage, and many other fields.

8.
Nanomicro Lett ; 16(1): 80, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206434

ABSTRACT

Constructing the efficacious and applicable bi-functional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction (OER) are critical to the development of electrochemically-driven technologies for efficient hydrogen production and avoid CO2 emission. Herein, the hetero-nanocrystals between monodispersed Pt (~ 2 nm) and Ni3S2 (~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H2 generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt-Ni3S2 could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH3OH to formate is accomplished at very low potentials (1.45 V) to attain 100 mA cm-2 with high electronic utilization rate (~ 98%) and without CO2 emission. Meanwhile, the Pt-Ni3S2 can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction (HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction (MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 mA cm-2 with good reusability.

9.
Adv Mater ; 36(21): e2311731, 2024 May.
Article in English | MEDLINE | ID: mdl-38267017

ABSTRACT

Electrochemical ethanol oxidation is crucial to directly convert a biorenewable liquid fuel with high energy density into electrical energy, but it remains an inefficient reaction even with the best catalysts. To boost ethanol oxidation, developing multimetallic nanoalloy has emerged as one of the most effective strategies, yet faces a challenge in the rational engineering of multimetallic active-site ensembles at atomic-level. Herein, starting from typical PtCu nanocrystals, an atomic Sn diffusion strategy is developed to construct well-defined Pt47Sn12Cu41 octopod nanoframes, which is enclosed by high-index facets of n (111)-(111), such as {331} and {221}. Pt47Sn12Cu41 achieves a high mass activity of 3.10 A mg-1 Pt and promotes the C-C bond breaking and oxidation of poisonous CO intermediate, representing a state-of-the-art electrocatalyst toward ethanol oxidation in acidic electrolyte. Density functional theory (DFT) calculations have confirmed that the introduction of Sn improves the electroactivity by uplifting the d-band center through the s-p-d coupling. Meanwhile, the strong binding of ethanol and the reduced energy barrier of CO oxidation guarantee a highly efficient ethanol oxidation process with improved Faradic efficiency of C1 products. This work offers a promising strategy for constructing novel multimetallic nanoalloys tailored by atomic metal sites as the efficient electrocatalysts.

10.
Nat Commun ; 14(1): 8395, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110431

ABSTRACT

The non-classical anodic H2 production from 5-hydroxymethylfurfural (HMF) is very appealing for energy-saving H2 production with value-added chemical conversion due to the low working potential (~0.1 V vs RHE). However, the reaction mechanism is still not clear due to the lack of direct evidence for the critical intermediates. Herein, the detailed mechanisms are explored in-depth using in situ Raman and Infrared spectroscopy, isotope tracking, and density functional theory calculations. The HMF is observed to form two unique inter-convertible gem-diol intermediates in an alkaline medium: 5-(Dihydroxymethyl)furan-2-methanol anion (DHMFM-) and dianion (DHMFM2-). The DHMFM2- is easily oxidized to produce H2 via H- transfer, whereas the DHMFM- is readily oxidized to produce H2O via H+ transfer. The increases in potential considerably facilitate the DHMFM- oxidation rate, shifting the DHMFM- ↔ DHMFM2- equilibrium towards DHMFM- and therefore diminishing anodic H2 production until it terminates. This work captures the critical intermediate DHMFM2- leading to hydrogen production from aldehyde, unraveling a key point for designing higher performing systems.

11.
Phys Rev E ; 108(4): L043201, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978661

ABSTRACT

Benign termination of mega-ampere (MA) level runaway current has been convincingly demonstrated in recent JET and DIII-D experiments, establishing it as a leading candidate for runaway mitigation on ITER. This comes in the form of a runaway flush by parallel streaming loss along stochastic magnetic field lines formed by global magnetohydrodynamic instabilities, which are found to correlate with a low-Z injection that purges the high-Z impurities from a post-thermal-quench plasma. Here, we show the competing physics that govern the postflush reconstitution of the runaway current in an ITER-like reactor where significantly higher current is expected. The trapped "runaways" are found to dominate the seeding for runaway reconstitution, and the incomplete purge of high-Z impurities helps drain the seed but produces a more efficient avalanche, two of which compete to produce a 2-3 MA step in current drop before runaway reconstitution of the plasma current.

12.
Biomater Sci ; 11(22): 7445-7457, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37819252

ABSTRACT

The topoisomerase I inhibitor, 7-ethyl-10-hydroxycamptothecin (SN38), has demonstrated potent anticancer activity. However, its clinical application is hindered by its low solubility and high crystallization propensity, which further complicates its encapsulation into nanoparticles for systemic delivery. Herein, we explore the utilization of lipid-assisted poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PLA) nanoparticles to achieve ultrahigh loading capability for SN38. Through the introduction of cationic, anionic, or neutral lipids, the SN38 loading efficiency and loading capacity is elevated to >90% and >10% respectively. These lipids efficiently attenuate the intermolecular π-π stacking of SN38, thereby disrupting its crystalline structure. Moreover, we assess the therapeutic activity of SN38-loaded formulations in various tumor models and identify an anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG)-assisted formulation that exhibits the highest anticancer activity and has favorable biosafety. Overall, our findings present a simple and robust strategy to achieve ultrahigh loading efficiency of SN38 using commonly employed PEG-b-PLA nanoparticles, opening up a new avenue for the systemic delivery of SN38.


Subject(s)
Nanoparticles , Neoplasms , Humans , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Fatty Alcohols , Polyesters , Cell Line, Tumor
13.
J Colloid Interface Sci ; 650(Pt A): 603-612, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37437440

ABSTRACT

Fe-, and N-co-doped carbon (FeNC) electrocatalysts are promising alternatives to Pt-based catalysts for oxygen reduction reaction (ORR); however, simultaneously enhancing their intrinsic activity and exposure of Fe active sites remains challenging. Herein, we report S-modified Fe single-atom catalysts (SACs) anchored on N,S-co-doped hollow porous nanocarbon (Fe/NS-C) for ORR. The unique hollow structure and large surface area of the SACs are favorable for mass/electron transport and exposure of Fe single-atom active sites. The as-prepared Fe/NS-C electrocatalysts display a high-efficiency ORR activity with a half-wave potential of 0.893 V versus the reversible hydrogen electrode and exceed that of the benchmark commercial Pt/C catalyst as well as most reported transition-metal based SACs. Impressively, the Fe/NS-C-based Al-air battery (AAB) displays a high open circuit voltage of 1.48 V, a maximum power density of 140.16 mW cm-2, and satisfactory durability, outperforming commercial Pt/C-based AAB. Furthermore, Fe/NS-C exhibits considerable potential as a cathode catalyst for application in direct methanol fuel cells. Experimental and theoretical calculation results reveal that the excellent ORR performance of Fe/NS-C can be contributed to the highly active FeN3S sites and the unique hollow structure. This work provides new insights into the rational design and synthesis high-performance ORR electrocatalysts for energy conversion and storage devices. of employing ZIF-8 as precursors.

14.
Small Methods ; 7(10): e2201612, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37452235

ABSTRACT

The mono-dispersed cubic siegenite CuNi2 S4 ultra-fine (≈5 nm) nanocrystals are fabricated through crystallization engineering under hot injection. The strong hydroxylation on mostly exposed CuNi2 S4 (220) surface leads to the formation of multi-valence (Cu+ , Cu2+ , Ni2+ , Ni3+ ) species with unsaturated hybridization and coordination micro-environments, which can induce rich redox reactions to optimize interfacial kinetics for the adsorbed reaction intermediates. The as-synthesized CuNi2 S4 nanocrystals with ultra-small particle size and the characteristics of being highly dispersed can increase specific surface area and hydroxylated active sites, which considerably contribute to the improvement of photocatalytic activities. Experimental and theoretical studies indicate that the CuNi2 S4 with unique surface condition can properly modulate the charge density distribution and the electronic band structure, thus achieving an optimal band gap for enhancing visible light absorption. Additionally, the strong hydroxylation on CuNi2 S4 (220) surface can not only make the photocatalytic process stable in alkaline environment but also bring about an impurity level between conduction and valence band, which facilitates the separation of photo-induced charge carriers by suppressing the rapid re-combination of exited electrons and holes. The optimization of band structure should be the intrinsic reason for the efficient photocatalytic pollutant degradation and hydrogen production under visible light illumination.

15.
BMC Nephrol ; 24(1): 188, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37365498

ABSTRACT

BACKGROUND: Hemodialysis patients are prone to gastrointestinal bleeding, and Mallory-Weiss syndrome (MWS) is one of the causes. Mallory-Weiss syndrome is often induced by severe vomiting, manifests as upper gastrointestinal bleeding, and is self-limited with a good prognosis. However, mild vomiting in hemodialysis patients can lead to the occurrence of MWS, and the mild early symptoms are easy to misdiagnose, leading to the aggravation of the disease. CASE PRESENTATION: In this paper, we report four hemodialysis patients with MWS. All patients displayed symptoms of upper gastrointestinal bleeding. The diagnosis of MWS was confirmed by gastroscopy. One patient had a history of severe vomiting; however, the other three reported histories of mild vomiting. Three patients received the conservative hemostasis treatment, and the gastrointestinal bleeding stopped. One patient underwent the gastroscopic and interventional hemostasis treatments. The conditions of three of the patients improved. Unfortunately, one of the patients died due to the cardia insufficiency. CONCLUSIONS: We think that the mild symptoms of MWS are easily covered up by other symptoms. This may lead to delays in diagnosis and treatment. For patients with severe symptoms, gastroscopic hemostasis is still the first choice, and interventional hemostasis can also be considered. For patients with mild symptoms, drug hemostasis is the first consideration.


Subject(s)
Mallory-Weiss Syndrome , Humans , Conservative Treatment/adverse effects , Death , Gastrointestinal Hemorrhage/etiology , Gastrointestinal Hemorrhage/therapy , Mallory-Weiss Syndrome/complications , Mallory-Weiss Syndrome/diagnosis , Vomiting , Adolescent , Middle Aged , Aged , Male , Female
16.
J Phys Chem Lett ; 14(20): 4688-4695, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37171053

ABSTRACT

Replacing fossil fuels with renewable energy sources is a crucial step for mitigating global warming. However, the intermittent nature of the most prevalent renewable sources, such as solar and wind, poses a significant challenge to their widespread deployment. One potential solution for renewable sources of storage is power-to-X, which involves the production of chemicals from electricity using solid oxide electrolysis cells. This process offers a flexible and efficient means of energy storage. This Perspective offers an overview of the characteristics, capabilities, and fundamental mechanisms of solid oxide electrolysis cells. It also examines the latest research progress and explores the prospects and challenges in this field.

17.
Dalton Trans ; 52(17): 5486-5495, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37038930

ABSTRACT

Two-dimensional copper sheets were introduced as the catalyst and bridge to enhance the electrical and thermal conductivity of graphene films prepared from graphene oxide nanosheets via a thermal reduction method. The effects of adding different amounts of copper sheets in the composite films were investigated, and the results show that the electrical and thermal conductivity of the graphene films could be increased by 3 times and 64.9%, respectively. The two-dimensional copper sheets not only play an important role as a catalyst toward improving the graphitization degree of reduced graphene oxide, but also act as a bridge and promote the interconnection of the electrical and thermal conduction paths in the composite films due to the good electrical and thermal conductivity of copper. Moreover, the heat dissipation experiment shows that this enhanced graphene composite film has potential applications in the heat management of electronics.

18.
Angew Chem Int Ed Engl ; 62(21): e202302950, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36946249

ABSTRACT

Converting carbon-based molecular fuels into electricity efficiently and cleanly without emitting CO2 remains a challenge. Conventional fuel cells using noble metals as anode catalysts often suffer performance degradation due to CO poisoning and a host of problems associated with CO2 production. This study provides a CO2 -emission-free direct formaldehyde fuel cell. It enables a flow of electricity while producing H2 and valuable formate. Unlike conventional carbon-based molecules electrooxidation, formaldehyde 1-electron oxidation is performed on the Cu anode with high selectivity, thus generating formate and H2 without undergoing CO2 pathway. In addition, the fuel cell produces 0.62 Nm3 H2 and 53 mol formate per 1 kWh of electricity generated, with an open circuit voltage of up to 1 V and a peak power density of 350 mW cm-2 . This study puts forward a zero-carbon solution for the efficient utilization of carbon-based molecule fuels that generates electricity, hydrogen and valuable chemicals in synchronization.

19.
Adv Mater ; 35(18): e2300020, 2023 May.
Article in English | MEDLINE | ID: mdl-36744440

ABSTRACT

Electrocatalytic CN coupling between carbon dioxide and nitrate has emerged to meet the comprehensive demands of carbon footprint closing, valorization of waste, and sustainable manufacture of urea. However, the identification of catalytic active sites and the design of efficient electrocatalysts remain a challenge. Herein, the synthesis of urea catalyzed by copper single atoms decorated on a CeO2 support (denoted as Cu1 -CeO2 ) is reported. The catalyst exhibits an average urea yield rate of 52.84 mmol h-1 gcat. -1 at -1.6 V versus reversible hydrogen electrode. Operando X-ray absorption spectra demonstrate the reconstitution of copper single atoms (Cu1 ) to clusters (Cu4 ) during electrolysis. These electrochemically reconstituted Cu4 clusters are real active sites for electrocatalytic urea synthesis. Favorable CN coupling reactions and urea formation on Cu4 are validated using operando synchrotron-radiation Fourier transform infrared spectroscopy and theoretical calculations. Dynamic and reversible transformations of clusters to single-atom configurations occur when the applied potential is switched to an open-circuit potential, endowing the catalyst with superior structural and electrochemical stabilities.

20.
Gut ; 72(5): 855-869, 2023 05.
Article in English | MEDLINE | ID: mdl-36690433

ABSTRACT

BACKGROUND AND AIMS: Current practice on Helicobacter pylori infection mostly focuses on individual-based care in the community, but family-based H. pylori management has recently been suggested as a better strategy for infection control. However, the family-based H. pylori infection status, risk factors and transmission pattern remain to be elucidated. METHODS: From September 2021 to December 2021, 10 735 families (31 098 individuals) were enrolled from 29 of 31 provinces in mainland China to examine family-based H. pylori infection, related factors and transmission pattern. All family members were required to answer questionnaires and test for H. pylori infection. RESULTS: Among all participants, the average individual-based H. pylori infection rate was 40.66%, with 43.45% for adults and 20.55% for children and adolescents. Family-based infection rates ranged from 50.27% to 85.06% among the 29 provinces, with an average rate of 71.21%. In 28.87% (3099/10 735) of enrolled families, there were no infections; the remaining 71.13% (7636/10 735) of families had 1-7 infected members, and in 19.70% (1504/7636), all members were infected. Among 7961 enrolled couples, 33.21% had no infection, but in 22.99%, both were infected. Childhood infection was significantly associated with parental infection. Independent risk factors for household infection were infected family members (eg, five infected members: OR 2.72, 95% CI 1.86 to 4.00), living in highly infected areas (eg, northwest China: OR 1.83, 95% CI 1.57 to 2.13), and large families in a household (eg, family of three: OR 1.97, 95% CI 1.76 to 2.21). However, family members with higher education and income levels (OR 0.85, 95% CI 0.79 to 0.91), using serving spoons or chopsticks, more generations in a household (eg, three generations: OR 0.79, 95% CI 0.68 to 0.92), and who were younger (OR 0.57, 95% CI 0.46 to 0.70) had lower infection rates (p<0.05). CONCLUSION: Familial H. pylori infection rate is high in general household in China. Exposure to infected family members is likely the major source of its spread. These results provide supporting evidence for the strategic changes from H. pylori individual-based treatment to family-based management, and the notion has important clinical and public health implications for infection control and related disease prevention.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Child , Adult , Adolescent , Humans , Helicobacter Infections/epidemiology , Helicobacter Infections/prevention & control , Family , Risk Factors , China/epidemiology , Epidemiologic Studies , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...