Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(23): 38419-38429, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017949

ABSTRACT

Due to sensitive scaling of the wavelength and the visible-light absorption properties with the device dimension, traditional passive silicon photonic devices with asymmetric waveguide structures cannot achieve polarization control at the visible wavelengths. In this work, a simple and small polarization beam splitter (PBS) for a broad visible-light band, using a tailored silicon nitride (Si3N4) ridge waveguide, is presented, which is based on the distinct optical distribution of two fundamental orthogonal polarized modes in the ridge waveguide. The bending loss for different bending radii and the optical coupling properties of the fundamental modes for different Si3N4 ridge waveguide configurations are analyzed. A PBS composed of a bending ridge waveguide structure and a triple-waveguide directional coupler was fabricated on the Si3N4 thin film. The TM excitation of the device based on a bending ridge waveguide structure shows a polarization extinction ratio (PER) of ≥ 20 dB with 33 nm bandwidth (624-657 nm) and insertion loss (IL) ≤ 1 dB at the through port. The TE excitation of the device, based on a triple-waveguide directional coupler with coupling efficiency distinction between the TE0 and TM0 modes, shows a PER of ≥ 18 dB with 50 nm bandwidth (580-630 nm) and insertion loss (IL) ≤ 1 dB at the cross port. The on-chip Si3N4 PBS device is found to possess the highest known PER at a visible broadband range and small (43 µm) footprint. It should be useful for novel photonic circuit designs and further exploration of Si3N4 PBSs.

2.
Opt Express ; 31(17): 27962-27972, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710861

ABSTRACT

We present a high-performance broadband (450-1550 nm) black phosphorus photodetector based on a thin-film lithium niobate waveguide. The waveguides are fabricated by the proton exchange method with flat surfaces, which reduces the stress and deformation of two-dimensional materials. At a wavelength of 1550 nm, the photodetector simultaneously achieves a high responsivity and wide bandwidth, with a responsivity as high as 147 A/W (at an optical power of 17 nW), a 3-dB bandwidth of 0.86 GHz, and a detectivity of 3.04 × 1013 Jones. Our photodetector exhibits one of the highest responsivity values among 2D material-integrated waveguide photodetectors.

3.
Appl Opt ; 62(22): 6053-6059, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37706961

ABSTRACT

We propose monolithically integrated electro-optical modulators based on thin-film x-cut barium titanate that exhibit large modulation bandwidth and operate at voltages compatible with complementary metal-oxide-semiconductor technology. The optical and radio frequency parameters of the modulator are systematically simulated, calculated, and optimized, respectively. Our simulation includes the evaluation of single-mode conditions, the separation distance between the electrode edge and the waveguide edge, bending loss, optical field distribution, and half-wave voltage-length product for optical parameters, and characteristic impedance, attenuation constant, radio frequency effective index, and -3d B modulation bandwidth for radio frequency parameters. By engineering both the microwave and photonic circuits, we have achieved high electro-optical efficiencies and group-velocity matching simultaneously. Our numerical simulation and theoretical analysis show that the half-wave voltage-length product was 0.48 V·cm, and the -3d B modulation bandwidths with a device length of 5 mm and 10 mm were 262 GHz and 107 GHz, respectively. Overall, our study highlights the potential of the proposed modulators for low driving voltage and high-performance optical communication systems.

4.
Nanomaterials (Basel) ; 13(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37368321

ABSTRACT

On-chip polarization control is in high demand for novel integrated photonic applications such as polarization division multiplexing and quantum communications. However, due to the sensitive scaling of the device dimension with wavelength and the visible-light absorption properties, traditional passive silicon photonic devices with asymmetric waveguide structures cannot achieve polarization control at visible wavelengths. In this paper, a new polarization-splitting mechanism based on energy distributions of the fundamental polarized modes in the r-TiO2 ridge waveguide is investigated. The bending loss for different bending radii and the optical coupling properties of the fundamental modes in different r-TiO2 ridge waveguide configurations are analyzed. In particular, a polarization splitter with a high extinction ratio operating at visible wavelengths based on directional couplers (DCs) in the r-TiO2 ridge waveguide is proposed. Polarization-selective filters based on micro-ring resonators (MRRs) with resonances of only TE or TM polarizations are designed and operated. Our results show that polarization-splitters for visible wavelengths with a high extinction ratio in DC or MRR configurations can be achieved with a simple r-TiO2 ridge waveguide structure.

5.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35564163

ABSTRACT

Highly luminescent FAPb0.7Sn0.3Br3 nanocrystals with an average photoluminescence (PL) quantum yield of 92% were synthesized by the ligand-assisted reprecipitation method. The 41-nm-thick perovskite film with a smooth surface and strong PL intensity was proven to be a suitable luminescent layer for perovskite light-emitting diodes (PeLEDs). Electrical tests indicate that the double hole-transport layers (HTLs) played an important role in improving the electrical-to-optical conversion efficiency of PeLEDs due to their cascade-like level alignment. The PeLED based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,40-(N-(p-butylphenyl))-diphenylamine)] (TFB)/poly(9-vinylcarbazole) (PVK) double HTLs produced a high external quantum efficiency (EQE) of 9%, which was improved by approximately 10.9 and 5.14 times when compared with single HTL PVK or the TFB device, respectively. The enhancement of the hole transmission capacity by TFB/PVK double HTLs was confirmed by the hole-only device and was responsible for the dramatic EQE improvement.

6.
RSC Adv ; 11(51): 31877-31883, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-35495539

ABSTRACT

Precisely controlling the wettability of a solid surface is vital for a wide range of applications such as control of liquid droplet motion, water collection and the directional transport of fluids. However, fabricating a large-area solid surface with highly controllable wettability in a low-cost way is still challenging. Here we present a cost-effective method to fabricate patterned solid surfaces with highly controllable wettability by combining chemical etching technique, chemical vapor deposition technique and laser direct writing technique. We experimentally demonstrated that the contact angle of water droplets on the patterned surfaces of a porous nanofilm fabricated using the presented fabrication method can be adjusted from 94.4° to 168.2° by changing the duty ratio of the periodic pattern on the patterned surfaces. Furthermore, we experimentally demonstrated that the contact angle of water droplets on the patterned surfaces is almost independent of the shape of the unit cell of the patterns. In addition, we propose an effective surface model to accurately calculate the contact angle of water droplets on patterned solid surfaces. Using the effective surface model, the wettability of a patterned solid surface can be precisely controlled by designing the duty ratio of its periodic patterns.

7.
Sci Rep ; 9(1): 6302, 2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31004107

ABSTRACT

Silicon thin film on lithium niobate combines the advantages of electronic properties of silicon and optical properties of lithium niobate, making it an ideal platform for high-density integrated optics. In this paper, we present an electro-optic tunable microring resonator in silicon thin film on lithium niobate operating at wavelengths of approximately 1.55 µm. The single-mode conditions, optical power distribution, mode profiles, and propagation losses of silicon waveguides are discussed and compared systematically. Quality factor, free spectral range, and bending losses of silicon microring resonators as different radii for different gap sizes between channel and ring waveguides are analyzed in detail. The bending loss and free spectral range decreased with increasing bending radius while the quality factor increased with increasing radius and gap size. The transmission spectrum of microring with radius R = 10 µm was tuned using the electro-optic effect. The key issues affecting the electro-optic effect, such as silicon film thickness and electric field strength, are discussed. This study is helpful for the understanding of microring structures in silicon thin film on lithium niobate, as well as for the fabrication of high-performance and multifunctional photonic integrated devices.

8.
Angew Chem Int Ed Engl ; 58(25): 8356-8361, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31018023

ABSTRACT

Surface-confined covalent coupling reactions of the linear compound 4-(but-3-en-1-ynyl)-4'-ethynyl-1,1'-biphenyl (1), which contains one alkyne and one enyne group on opposing ends, have been investigated using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The reactions show a surface-dependent chemoselectivity: on Au(111), compound 1 preferentially yields cyclotrimerization products, while on Cu(111), a selective coupling between the enyne and alkyne groups is observed. Linear, V-shaped string formations combined with Y-shaped bifurcation motifs result in a random reticulation on the entire surface. DFT calculations show that the C-H⋅⋅⋅πδ- transition state of the reaction between the deprotonated alkyne group and a nearby H-donor of the alkene group plays a key role in the mechanism and high chemoselectivity. This study highlights a concept that opens new avenues to the surface-confined synthesis of covalent carbon-based sp-sp2 polymers.

9.
ACS Appl Mater Interfaces ; 9(34): 29248-29254, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28805364

ABSTRACT

Directional water collection has stimulated a great deal of interest because of its potential applications in the field of microfluidics, liquid transportation, fog harvesting, and so forth. There have been some bio or bioinspired structures for directional water collection, from one-dimensional spider silk to two-dimensional star-like patterns to three-dimensional Nepenthes alata. Here we present a simple way for the accurate design and highly controllable driving of tiny droplets: by laser direct writing of hierarchical patterns with modified wettability and desired geometry on a superhydrophobic film, the patterned film can precisely and directionally drive tiny water droplets and dramatically improve the efficiency of water collection with a factor of ∼36 compared with the original superhydrophobic film. Such a patterned film might be an ideal platform for water collection from humid air and for planar microfluidics without tunnels.

10.
Sci Rep ; 6: 31612, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27527662

ABSTRACT

This paper reports on the supercontinuum generation in yttrium orthosilicate bulk crystal and 6-mm-long ion implanted planar waveguide. The waveguide is fabricated by 6 MeV oxygen ions implantation with fluence of 5 × 10(14) ions/cm(2) at room temperature. The yttrium orthosilicate bulk crystal and waveguide are pumped using a mode-locked Ti:Sapphire laser with a center wavelength of 800 nm. The generated broadest supercontinuum spans 720 nm (at -30 dB points) from 380 to 1100 nm in bulk crystal and 510 nm (at -30 dB points) from 490 to 1000 nm in ion implanted waveguide, respectively. Compared to the bulk crystal, the ion implanted waveguide requires almost three orders of magnitude lower pump power to achieve a similar level of broadening. The supercontinuum is generated in the normal dispersion regime and exhibits a relatively smooth spectral shape. Our research findings indicate that ion implantation is an efficient method to produce waveguide in yttrium orthosilicate crystal for low-threshold supercontinuum generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...