Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785988

ABSTRACT

Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these, IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained from HUVEC cells: FAGDDAPRR (IC50 = 262.98 µM), QGPIGPR (IC50 = 81.09 µM), and GPTGPAGP (IC50 = 168.11 µM). Peptide constituents derived from ribbonfish proteins effectively modulated ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling corroborated these findings, emphasizing the utility of functional foods as a promising avenue for the treatment and prevention of hypertension, with potential ancillary health benefits and applications as substitutes for synthetic drugs.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Human Umbilical Vein Endothelial Cells , Peptides , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Antihypertensive Agents/isolation & purification , Animals , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/isolation & purification , Human Umbilical Vein Endothelial Cells/drug effects , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Molecular Docking Simulation , Perciformes/metabolism
2.
Molecules ; 28(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985640

ABSTRACT

The electron transport layer (ETL) with excellent charge extraction and transport ability is one of the key components of high-performance perovskite solar cells (PSCs). SnO2 has been considered as a more promising ETL for the future commercialization of PSCs due to its excellent photoelectric properties and easy processing. Herein, we propose a facile and effective ETL modification strategy based on the incorporation of methylenediammonium dichloride (MDACl2) into the SnO2 precursor colloidal solution. The effects of MDACl2 incorporation on charge transport, defect passivation, perovskite crystallization, and PSC performance are systematically investigated. First, the surface defects of the SnO2 film are effectively passivated, resulting in the increased conductivity of the SnO2 film, which is conducive to electron extraction and transport. Second, the MDACl2 modification contributes to the formation of high-quality perovskite films with improved crystallinity and reduced defect density. Furthermore, a more suitable energy level alignment is achieved at the ETL/perovskite interface, which facilitates the charge transport due to the lower energy barrier. Consequently, the MDACl2-modified PSCs exhibit a champion efficiency of 22.30% compared with 19.62% of the control device, and the device stability is also significantly improved.

3.
Nat Commun ; 13(1): 7422, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36456581

ABSTRACT

Regular patterns can form spontaneously in chemical reaction-diffusion systems under non-equilibrium conditions as proposed by Alan Turing. Here, we found that regular patterns can be generated in uphill-diffusion solution systems without a chemical reaction process through both in-situ and ex-situ observations. Organic semiconductor solution is confined between two parallel plates with controlled micron/submicron-meter distance to minimize convection of the liquid and avoid spinodal precipitation at equilibrium. The solvent evaporation concentrates the solution gradually into an oversaturated non-equilibrium condition, under which a phase-transition occurs and ordered concentration-waves are generated. By proper tuning of the experimental parameter, multiple regular patterns with micro/nano-meter scaled features (line, square-grid, zig-zag, and fence-like patterns etc.) were observed. We explain the observed phenomenon as Turing-pattern generation resulted from uphill-diffusion and solution oversaturation. The generated patterns in the solutions can be condensed onto substrates to form structured micro/nanomaterials. We have fabricated organic semiconductor devices with such patterned materials to demonstrate the potential applications. Our observation may serve as a milestone in the progress towards a fundamental understanding of pattern formation in nature, like in biosystem, and pave a new avenue in developing self-assembling techniques of micro/nano structured materials.

4.
Nanomaterials (Basel) ; 12(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35630995

ABSTRACT

In recent years, rare-earth metals with triply oxidized state, lanthanide ions (Ln3+), have been demonstrated as dopants, which can efficiently improve the optical and electronic properties of metal halide perovskite materials. On the one hand, doping Ln3+ ions can convert near-infrared/ultraviolet light into visible light through the process of up-/down-conversion and then the absorption efficiency of solar spectrum by perovskite solar cells can be significantly increased, leading to high device power conversion efficiency. On the other hand, multi-color light emissions and white light emissions originated from perovskite nanocrystals can be realized via inserting Ln3+ ions into the perovskite crystal lattice, which functioned as quantum cutting. In addition, doping or co-doping Ln3+ ions in perovskite films or devices can effectively facilitate perovskite film growth, tailor the energy band alignment and passivate the defect states, resulting in improved charge carrier transport efficiency or reduced nonradiative recombination. Finally, Ln3+ ions have also been used in the fields of photodetectors and luminescent solar concentrators. These indicate the huge potential of rare-earth metals in improving the perovskite optoelectronic device performances.

5.
Nat Commun ; 11(1): 977, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32080180

ABSTRACT

Semiconductor III-V photonic crystal (PC) laser is regarded as a promising ultra-compact light source with unique advantages of ultralow energy consumption and small footprint for the next generation of Si-based on-chip optical interconnects. However, the significant material dissimilarities between III-V materials and Si are the fundamental roadblock for conventional monolithic III-V-on-silicon integration technology. Here, we demonstrate ultrasmall III-V PC membrane lasers monolithically grown on CMOS-compatible on-axis Si (001) substrates by using III-V quantum dots. The optically pumped InAs/GaAs quantum-dot PC lasers exhibit single-mode operation with an ultra-low threshold of ~0.6 µW and a large spontaneous emission coupling efficiency up to 18% under continuous-wave condition at room temperature. This work establishes a new route to form the basis of future monolithic light sources for high-density optical interconnects in future large-scale silicon electronic and photonic integrated circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...