Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2153-2160, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36043822

ABSTRACT

Based on community investigation data from grasslands on two different soil parent material types (loess and sand parent materials) and under three human utilization modes in the Saihan Ullah Reserve, we calculated human disturbance index (HDI) and biodiversity indices and analyzed the interactions between species diversity and degradation levels. The results showed that degradation status varied across different soil parent material types and human utilization modes, and that degradation levels of loess and sand parent materials both increased with the enhancement of human utilization intensification. HDI of loess parent material grasslands (mean value of 1.21) was lower than sand parent material grasslands (mean value of 1.48) in the same human utilization. Biodiversity indices declined with soil sandy degree and the utilization intensification. The mean values of Margarlef richness index, Shannon diversity index, Simpson dominance index and Pielou evenness index were between 1.57-4.27, 1.16-2.39, 0.76-0.87, and 0.71-0.80, respectively. The Margalef richness index, Shannon diversity index and Simpson dominance index decreased with increasing HDI, while Pielou evenness index increased. Overgrazing could lead to serious threat on both grasslands with soil parent material types, and the optimum utilization mode of loess and sand parent material grasslands were enclosure with mowing and seasonal grazing. In the future works of biodiversity conservation, it is important to consider the influence of both different soil patent material and human utilization modes of grassland. It is urgent to develop different utilization modes for grassland under different soil parent material types, which would enhance the matchness of grassland restoration and management with local conditions.


Subject(s)
Grassland , Soil , Biodiversity , Humans , Plants/metabolism , Sand
2.
Zool Res ; 40(5): 439-448, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31343854

ABSTRACT

Detailed information on the size and genetic structure of wildlife populations is critical for developing effective conservation strategies, especially for those species that have suffered population decline and fragmentation due to anthropogenic activities. In the present study, we used a non-invasive approach combining fecal pellet sampling with mitochondrial DNA and nuclear DNA microsatellite marker analysis to monitor and compare the population structure of the Chinese goral (Naemorhedus griseus) in Beijing and northeast Inner Mongolia in China. Of the 307 fecal samples confirmed to be from N. griseus, 15 individuals (nine females and six males) were found in the Beijing population and 61 individuals (37 females and 24 males) were found in the Inner Mongolian population. Among these 76 individuals, we identified eight haplotypes and 13 nucleotide polymorphic sites from mtDNA and 45 alleles from 10 microsatellite loci. Spatially structured genetic variation and a significant level of genetic differentiation were observed between the two populations. In both populations, the sex ratios were skewed toward females, indicating high reproductive potential, which is crucial for population recovery and conservation of this patchily distributed vulnerable species. We suggest that managing the two populations as evolutionarily significant units with diverse genetic backgrounds could be an effective solution for present population recovery, with the possible relocation of individuals among different groups to help ensure future goral species prosperity.


Subject(s)
Animal Distribution , Conservation of Natural Resources , Genotype , Ruminants/genetics , Animals , Female , Genetic Variation , Male , Phylogeny , Sex Determination Analysis/methods , Sex Determination Analysis/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...